Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2010 | 59 | 1-2 | 141-149

Article title

Izolacja kwasów nukleinowych ze środowiska - pierwszy krok w analizie metagenomu

Authors

Content

Title variants

EN
Isolation of nucleic acids from the environment - the first step in metagenome analysis

Languages of publication

PL EN

Abstracts

EN
Recently, increasing interest in ecology of microorganisms has been associated with the possibility of direct analysis of microbial community structure due to application of molecular methods based on isolated metagenome DNA. The metagenome approach can provide a cultivation-independent assessment of the largely untapped genetic reservoir of soil or water microbial communities. However, the crucial step in this approach is efficient extraction of high-quality total DNA representing the metagenome of a habitat. The DNA extraction methods for soil habitats are grouped into two major types, i.e. indirect based on the recovery of microbes (e.g. bacterial cells) and their subsequent lysis, and direct lysis of cells in the sample followed by DNA purification. The direct extraction of total DNA from an environmental sample presumably better represents its bacterial or fungal metagenome; hence, this approach has been used more often than the fractionation methods. Although direct extraction of DNA is less labour-intensive and yield more DNA, the recovered DNA fragments are usually smaller than those obtained by the indirect approach are. The fractionation method is advantageous for soil samples containing higher amounts of organic matter or other substances that interfere with DNA isolation. This method is also applied for DNA extraction from water samples. Microbial ecologists currently use different commercially available kits for total DNA isolation from soil or water. However, it would appear that the most efficient method of DNA extraction from environmental samples is still far from being established.

Keywords

Journal

Year

Volume

59

Issue

1-2

Pages

141-149

Physical description

Dates

published
2010

Contributors

  • Katedra Mikrobiologii, Uniwersytet Rolniczy w Krakowie, Al. Mickiewicza 24/28, 30-059 Kraków, Polska

References

  • Ascher J., Ceccherini M. T., Pantani O. L., Agnelli A., Borgogni F., Guerri G., Nannipieri P., Pietramellara G., 2009. Sequential extraction and genetic fingerprinting of a forest soil metagenome. Appl. Soil Ecol. 42, 176-181.
  • Bakken L. R., Lindahl V., 1995. Recovery of bacterial cells from soil. [W:] Nucleic acids in the environment: methods and applications. Trevors J. T., van Elsas J. D. (red.). Springer-Verlag, Heidelberg, 9-27.
  • Bej K. A., Mahbubani M. H., 1996. Current development and applications of nucleic acid technology in the environmental sciences. [W:] Nucleic acid analysis. Priciples and bioapplications. Dangler Ch. A. (red.). Wiley-Liss, Inc., New York, 231-274.
  • Bej K. A., Steffan R. J., DiCeasre J. L., Haff L., Atlas R. M., 1990. Detection of coliform bacteria in water by polymerase chain reaction and gene probes. Appl. Environ. Microbiol. 56, 307-314.
  • Carrigg C., Rice O., Kavanagh S., Collins G., O'Flaherty V., 2007. DNA extraction metod affects microbial community profiles from soils and sediment. Appl. Microbiol. Biotechnol. 77, 955-964.
  • Cooper J. E., Rao J. R., 2006. Molecular approaches to soil, rhizosphere and plant microorganism analysis. CAB International, Wallingford.
  • Cullen D. W., Hirsch P. R., 1998. Simple and rapid method for direct extraction of microbial DNA from soil for PCR. Soil Biol. Biochem. 30, 983-993.
  • Duarte G. F., Soares Rosado A., Seldin L., Keijzer-Wolters A. C., van Elsas J. D., 1998. Extraction of ribosomal RNA and genomic DNA from soil for studying the diversity of the indigenous bacterial community. J. Microbiol. Methods 32, 21-29.
  • Felske A., Engelen B., Nübel U., Backhaus H., 1996. Direct ribosome extraction from soil to extract bacterial rRNA for community analysis. Appl. Environ. Microbiol. 62, 4162-4167.
  • Frostegård Å., Courtois S., Ramisse V., Clerc S., Bernillon D., Le Gall F., Jeannin P., Nesme X., Simonet P., 1999. Quantitation of bias related to the extraction of DNA directly from soil. Appl. Environ. Microbiol. 65, 5409-5420.
  • Gabor E. M., de Vries E. J., Janssen D. B., 2003. Efficient recovery of environmental DNA for expression cloning by indirect extraction method. FEMS Microbiol. Ecol. 44, 153-163.
  • Griffiths R. I., Whiteley A. S., O'Donnell A. G., Bailey M. J., 2000. Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl. Environ. Microbiol. 66, 5488- 5491.
  • Holben W. E., Jansson J. K., Chelm B. K., Tiedje J. M., 1988. DNA probe method for the detection of specific microorganisms in the soil bacterial community. Appl. Environ. Microbiol. 54, 703-711.
  • Kozdrój J., 2003. Różnorodność mikroorganizmów glebowych w świetle badań molekularnych. Post. Mikrobiol. 43, 375-398.
  • Krsek M., Wellington E. M. H., 1999. Comparison of different methods for the isolation and purification of total community DNA from soil. J. Microbiol. Methods 39, 1-16.
  • Kuske C. R., Banton K. L., Adorada D. L., Stark P. C., Hill K. K., Jackson P. J., 1998. Small-scale DNA sample preparation method for field PCR detection of microbial cells and spores in soil. Appl. Environ. Microbiol. 64, 2463-2472.
  • Liesack W., Janssen P. H., Rainey F. A., Ward-Rainey N. L., Stackebrand E., 1997. Microbial diversity in soil: the need for a combined approach using molecular and cultivation techniques. [W:] Modern soil microbiology. van Elsas J. D., Trevors J. T., Wellington E. M. H. (red.). Marcel Dekker Inc., New York, 375-433.
  • Lüdemann H., Arth I., Liesack W., 2000. Spatial changes in the bacterial community structure along a vertical oxygen gradient in flooded paddy soil cores. Appl. Environ. Microbiol. 66, 754-762.
  • Milling A., Gomes N. C. M., Oros-Sichler M., Gotz M., Smalla K., 2005. Nucleic acids extraction from environmental samples. [W:] Molecular microbial ecology. Osborn A. M., Smith C. J. (red.). Tylor & Francis, New York, 1-24.
  • More M. I., Herrick J. B., Silva M. C., Ghiorse W. C., Madsen E. L., 1994. Quantitative cell lysis of indigenous microorganisms and rapid extraction of microbial DNA from sediment. Appl. Environ. Microbiol. 60, 1572-1580.
  • Ogram A., Sayler G. S., Barkay T., 1987. The extraction and purification of microbial DNA from sediments. J. Microbiol. Methods 7, 57-66.
  • Ogram A., 2000. Soil molecular microbial ecology at age 20: methodological challenges for the future. Soil Biol. Biochem. 32, 1499-1504.
  • Paul J. H., Cazares L., Thurmond J., 1990. Amplification of the rbcL gene from dissolved and particulatevDNA from aquatic environments. Appl. Environ. Microbiol. 56, 1963-1966.
  • Peršoh D., Theuerl S., Buscot F., Rambold G., 2008. Towards a universally adaptable method for quantitative extraction of high-purity nucleic acids from soil. J. Microbiol. Methods 75, 19-24.
  • Robe P., Nalin R., Capellano C., Vogel T. M., Simonet P., 2003. Extraction of DNA from soil. Eur. J. Soil. Biol. 39. 183-190.
  • Saano A., Tas E., Pippola S., Lindström K., van Elsas J. D., 1995. Extraction and analysis of microbial DNA. [W:] Nucleic acids in the environment: methods and applications. Trevors J. T., van Elsas J. D. (red.). Springer-Verlag, Heidelberg, 49-67.
  • Sessitsch A., Gyamfi S., Stralis-Pavese N., Weilharter A., Pfeifer U., 2002. RNA isolation from soil for bacterial community analysis: evaluation of different extraction and soil conservation protocols. J. Microbiol. Methods 51, 171-179.
  • Sommerville C. C., Knight I. T., Straub W. L., Colwell R., 1989. Simple, rapid method for direct isolation of nucleic acids from aquatic environments. Appl. Environ. Microbiol. 55, 548-554.
  • Stark P. C., Mullen K. I., Banton K., Russotti R., Soran D., Kuske C. R., 2000. Pre-PCR DNA quantitation of soil and sediment samples: method development and instrument design. Soil Biol. Biochem. 32, 1101-1110.
  • Steele H. L., Streit W. R., 2006. Metagenomics for the study of soil microbial communities. [W:] Molecular approaches to soil, rhizosphere and plant microorganism analysis. Cooper J. E., Rao J. R. (red.). CAB International, Wallingford, 42-54.
  • Thakuria D., Schmidt O., Mac Siúrtáin M., Egan D., Doohan F. M., 2008. Importance of DNA quality in comparative soil microbial community structure analyses. Soil Biol. Biochem. 40, 1390-1403.
  • Torsvik V., 1980. Isolation of bacterial DNA from soil. Soil Biol. Biochem. 12, 15-21.
  • Trevors J. T., van Elsas J. D., 1995. Nucleic acids in the environment: methods and applications. Springer-Verlag, Heidelberg.
  • Van Eslsas J. D., Mäntynen V., Wolters A. C., 1997. Soil DNA extraction and assessment of the fate of Mycobacterium chlorophenolicum strain PCP-1 in different soils by 16S ribosomal RNA gene sequence based most-probable-number PCR and immunofluorescence. Biol. Fertil. Soils 24, 188-195.
  • Weller R., Ward D. M., 1989. Selective recovery of 16S rRNA sequences from natural microbial communities in the form of cDNA. Appl. Environ. Microbiol. 55, 1818-1822.
  • Wellington E. M. H., Marsh P., Watts J. E. M., Burden J., 1997. Indirect approaches for studying soil microorganisms based on cell extraction and culturing. [W:] Modern soil microbiology. Van Elsas J. D., Trevors J. T., Wellington E. M. H. (red.). Marcel Dekker, New York, 311-329.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv59p141kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.