Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2005 | 54 | 2-3 | 195-212

Article title

Neuroprzekaźnik hamujący w plastyczności kory mózgu

Authors

Content

Title variants

EN
Inhibitory neurotransmitter in cerebral cortex plasticity

Languages of publication

PL EN

Abstracts

EN
The evidence accumulated in the past fifty years indicates that γ-aminobutyric acid (GABA) is a widely distributed inhibitory neurotransmitter present in the interneurons and synaptic terminals in mammalian brain. GABA acts on at least two distinct ionotropic receptors: GABAA,C and metabotropic receptor GABAB. This paper reviews the data that pertain to the role played by GABA in neocortical plasticity. Emphasis is given to GABA synthesis, GABA in the cellular and extracellular regulation, GABA receptors and GABA interneuron distribution, analyzed by various means. These include: anatomical, electrophysiological responses, ligand binding as revealed by receptor autoradiography, and expression of GAD65, GAD67 at both mRNA and protein (immunoreactivity) levels. Possible mechanisms of involvement of GABA in plastic changes of cortical neuron's response are reviewed, and data on up- and down regulation of GABAA receptors in neocortical plasticity are summarized. Mechanisms involving GABA in cortical plasticity of adult and neonatal animals are discussed.

Keywords

Journal

Year

Volume

54

Issue

2-3

Pages

195-212

Physical description

Dates

published
2005

Contributors

  • Zakład Neurobiologii Molekularnej i Komórkowej Instytut Biologii Doświadczalnej im. M. Nenckiego PAN, Pasteura 3, 02-093 Warszawa, Polska

References

  • AGMON A., CONNORS B. W., 1991. Thalamocortical responses of mouse somatosensory (barrel) cortex in vitro. Neuroscience 41, 365-379.
  • AKHTAR N. D., LAND P. W., 1991. Activity-dependent regulation of glutamic acid Decarboxylase in the rat barrel cortex: effects of neonatal versus adult sensory deprivation. J. Comp. Neurol. 307, 200-213.
  • ALCANTRA S., SORIANO E., FERRER I., 1996. Thalamic and basal forebrain afferents modulate the development of parvalbumin and calbindin D28K immunoreactivity in the barrel cortex of the rat. Eur. J. Neurosci. 7, 1522-1534.
  • ALFINITO P. D., WANG S. P., MANZINO L., RIJHSINGHANI S., ZEEVALK G. D., SONSALLA P. K., 2003. Adenosinergic protection of dopaminergic and GABAergic neurons against mitochondrial inhibition through receptors located in the substantia nigra and striatum, respectively. J. Neurosci. 23, 10982-10987.
  • AMITAI Y., GIBSON J. R., BEIERLEIN M., PATRICK S. L., HO A. M., CONNORS B. W., GOLOMB D., 2002. The spatial dimensions of electrically coupled networks of interneurons in the neocortex. J. Neurosci. 22, 4142-4152.
  • ASADA H., KAWAMURA Y., MARUYAMA K., KUME H., DING R., JI F. Y., KANBARA N., KUZUME H., SANBO M., YAGI T., OBATA K., 1996. Mice lacking the 65-kDa isoform of Glutamic acid decarboxylase (GAD65) maintain normal levels of GAD67 and GABA in their brains but are susceptible to seizures. Biochem. Biophys. Res. Commun. 229, 891-895.
  • ARIDA R. M., SCORZA C. A., DA SILVA A. V., SCORZA F. A., CAVALHEIRO E. A., 2004. Differential effects of spontaneous versus forced exercise in rats on the staining of parvalbumin-positive neurons in the hippocampal formation. Neurosci. Lett. 364, 135-138.
  • ARTOLA A., SINGER W., 1987. Long-term potentiation and NMDA receptors in rat visual cortex. Nature 330, 649-652.
  • BAIMBRIDGE K. G., CELIO M. R., ROGERS J. H., 1992. Calcium - binding proteins in the nervous system. Trends Neurosci. 15, 303-308.
  • BEAULIEU C., 1993. Numerical data on neocortical neurons in adult rat, with special reference to the GABA population. Brain Res. 609, 284-92.
  • BECKMAN M. L., BERNSTEIN E. M., QUICK M. W., 1999. Multiple G protein-coupled receptors initiate protein kinase C redistribution of GABA transportes in hippocampal neurons. J. Neurosci. 19, 1-6.
  • BENSON D. L., ISACKSON P. J., GALL C. M., JONES E. G., 1991. Differential effects of monocular deprivation on glutamic acid decarboxylase and type II calcium-calmodulin-dependent protein kinase gene expression in the adult monkey visual cortex. J. Neurosci. 11, 31-47.
  • BENSON D. L., ISACKSON P. J., GALL C. M., JONES E. G., 1992. Contrasting patterns in localization of glutaminic acid decarboxylase and Ca2+ / calmodulin protein kinase gene expression in rat central nervous system. Neuroscience 46, 825-849.
  • BENKE D., MARTENS S., MOHLER H., 1991. Ubiquitous presence of GABAreceptors containing the alpha1 - subunit in rat brain demonstrated by immunoprecipitation and immunohistocytochemistry. Mol. Neuropharmacol. 1, 103-110.
  • BERNSTEIN E. M., QUICK M. W., 1999. Regulation of gamma-aminobutyric acid (GABA) transporters by extracellular GABA. J. Biol. Chem 274, 889-895.
  • BLATOW M., ROZOV A., KATONA I., HORMUZDI S. G., MEYER A. H., WHITTINGTON M. A., CAPUTI A., MONYER H., 2003. A novel network of multipolar bursting interneurons generates theta frequency oscillations in neocortex. Neuron 38, 805-817.
  • BORDEN L. A., 1996. GABA transporter heterogenity: pharmacology and cellular localization. Neurochem. Int. 29, 335-356.
  • BRAGIN A., 1995. Gamma (40-100Hz) oscillation in the hippocampus of the behaving rat. J. Neurosci. 15, 47-60.
  • BROWNSTEIN M. J., 1989. Neuropeptides. [W:] Basic Neurochemistry: Molecular, Cellular and Medical Aspects. SIEGEL G. L. (red.), Raven Press Ltd., New York, 287-309.
  • BUHL E. H., HALASY K., SOMOGYI P., 1994. Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of synaptic release sites. Nature 368, 808-809.
  • BUSSAARD A. B., HERBISON A. E., 2000. Long term plasticity of postsynaptic GABAA receptor function in the adult brain: insights from the oxitocin neurone. Trends Neurosci. 23, 190-195.
  • CAILLARD O., MORENO H., SCHWALLER B., LLANO I., CELIO M. R., MARTY A., 2000. Role of the calcium-binding protein parvalbumin in short-term synaptic plasticity. Proc. Natl. Acad. Sci. USA 97, 13372-13377.
  • CELIO M. R., 1986. Parvalbumin in most gammaaminobutyric acid containing neurons of the rat cerebral cortex. Science 231, 995-997.
  • CELIO M. R., 1990. Parvalbumin and calbindin in the rat nervous system. Neuroscience 35, 375-475.
  • CHEBIB M., JOHNSTON G. A., 1999. ABC of GABA receptors: a brief review. Clin. Exp. Pharmacol. Physiol. 26, 937-940.
  • COBB S. R., 1995. Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature 378, 75-78.
  • CONTI F., ZUCCARELLO L. V., BARBARESI P., MINELLI A., BRECHA N. C., MELONE M., 1999. Neuronal, glial and epithelial localization of γ-aminobutyric acid transporter 2, a high-affinity γ-aminobutyr-ic acid plasma membrane transporter, in cerebral cortex and neighboring structures. J. Comp. Neurol. 409, 482-494.
  • CRESTANI F., LOREZ M., BAER K., ESSRICH C., BENKE D., LAURENT J. P., BELZUNG C., FRITSCHY J. M., LUSCHER B., MOHLER H., 1999. Decreased GABAA-receptor clustering results in enhanced anxiety and a bias for threat cues. Nat. Neurosci. 2, 833-839.
  • DAVIES C. H., COLLINGRIDGE G. L., 1993. The physiological regulation of synaptic inhibition by GABA autoreceptors in rat hippocampus. J. B Physiol. 472, 245-265.
  • DEFILIPE J., 1993. Neocortical neuronal diversity: chemical heterogeneity revealed by colocalisation studies of classic neurotransmitter neuropeptides, calcium-binding proteins and cell surface molecules. Cerebral Cortex 3, 273-289.
  • DEFELIPE J., GONZALEZ-ALBO M. C., DEL RIO M. R., ELSTON G. N., 1999. Distribution and patterns of connectivity of interneurons containing calbindin, calretinin, and parvalbumin in visual areas of the occipital and temporal lobes of the macaque monkey. J. Comp. Neurol. 412, 515-526.
  • DING R., ASADA H., OBATA K., 1998. Changes in extracellular glutamate and GABA levels in the hippocampal CA3 and CA1 areas and the induction of glutamic acid decarboxylase-67 in dentate granule cells of rats treated with kainic acid. Brain Res. 800, 105-113.
  • DREVETS W. G., VIDEEN T. O., PRICE J. L., PRESKORN S. H., CARMICHEAL S. T., RAICHLE M. E., 1992. A functional anatomical study of unipolar depression. J Neurosci. 12, 3628-3641.
  • EGHBALI M., CURMI J. P., BIRNIR B., GAGE P. W., 1997. Hippocampal GABAA channel conductance increased by diazepam. Nature 388, 71-75.
  • ERLANDER M. G., TOBIN A. J., 1991. The structural and functional heterogeneity of glutamic acid decarboxylase: A review. Neurochem. Res. 16, 215-226.
  • ERLANDER M. G., TOBIN A. J., CHESSELET M. F., 1992. Comparative distribution of messenger RNAs encoding glutamic acid decarboxylases (Mr 65, 000 and Mr 67,000) in the basal ganglia of the rat. J. Comp. Neurol. 318, 245-254.
  • ESCLAPEZ M., TILLAKARATNE N. J. K., TOBIN A. J., HOUSER C. R., 1993. Comperative localization of mRNA encoding two forms of glutaminic acid decarboxylase with non radioactive in situ hybridization methods. J. Comp. Neurol. 331, 339-362.
  • ESCLAPEZ M., TILLAKARATNE N. J. K., KAUFMAN A. J., TOBIN A. J., HOUSER C. R., 1994. Comparative localization of two forms of glutamic acid decarboxylase and their mRNAs in rat brain supports the concept of functional differences between the forms. J. Neurosci. 14, 1834-1855.
  • FABRI M., MANZONI T., 1996. Glutamate decarboxylase immunoreactivity in cortical projecting neurons of rat somatic sensory cortex. Neuroscience 72, 435-448.
  • FARRAR S. J., WHITING P. J., BONNERT T. P., MCKERNAN R. M., 1999. Stoichiometry of a ligand-gated ion channel determined by fluorescence energy transfer. J. Biol. Chem. 274, 10100-10104.
  • FELDBLUM S., ERLANDER M. G., TOBIN A. J., 1993. Different distributions of GAD65 and GAD67 mRNAs suggest that the two glutamate decarboxylases play distinctive functional roles. J. Neurosci. Res. 34, 689-706.
  • FILIPKOWSKI R. K., RYDZ M., BERDEL B., MORYS J., KACZMAREK L., 2000. Tactile experience induces c-fos expression in rat barrel cortex. Learn. Mem. 7, 116-122.
  • FITZPATRICK D., LUND J. S., SCHMECHEL D. E., TOWLES A. C., 1987. Distribution of GABAergic neurons and axon terminals in the macaque striate cortex. J. Comp. Neurol. 264, 73-91.
  • FREUND T. F., 2003. Interneuron diversity series: rhythm and mood in perisomatic inhibition. Trends Neurosci 26, 489-495.
  • FREUND T. F., MESKENAITE V., 1992. γ-Aminobutyric acid-containing basal forebrain neurons innervate inhibitory interneurons in the neocortex. Proc. Natl. Acad. Sci. USA 89, 738-742.
  • FREUND T. F., BUZSÁKI G., 1996. Interneurons of the hippocampus. Hippocampus 6, 347-470.
  • FRITSCHY J. M., MOHLER H., 1994. GABAA receptor heterogeneity in the adult rat brain: differential regional and cellular distribution of seven major subunits. J. Comp. Neurol. 359, 154-194.
  • FRITSCHY J. M., BRUNIG I., 2003. Formation and plasticity of GABAergic synapses: physiological mechanism and pathophysiological implications. Pharmacol. Ther. 98, 299-323.
  • FUCHS J. L., SALAZAR E., 1998. Effects of whisker trimming on GABA(A) receptor binding in the barrel cortex of developing and adult rats. J. Comp. Neurol. 395, 209-216.
  • FUKUDA T., HEIZMANN C. W., KOSSAKA T., 1997. Quantitative analysis of GAD65 and GAD67 immunoreactivities in somata of GABAergic neurons in the mouse hippocampus proper (CA1 and CA3 regions) with special reference to parvalbumincontaining neurons. Brain Res. 764, 237-243.
  • FUKUDA T., AIKA Y., HEIZMANN C., KOSAKA T., 1998. GABAergic axon terminals at perisomatic and dendritic inhibitory sites show different immunoreactivities against two GAD isoforms, GAD67 and GAD65, in the mouse hippocampus: a digitized quantitative analysis. J. Comp. Neurol. 399, 424-426.
  • GALARRETA M., HESTRIN S., 1999. A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature 402, 72-75.
  • GALARRETA M., HESTRIN S., 2001. Electrical synapses between GABA-releasing interneurons. Nature Reviews 2, 425-433.
  • GARAGHTY P. E., KASS J. H., 1991. Functional reorganization in adult monkey after peripheral nerve injury. NeuroReport 2, 747-750.
  • GIBSON J. R., BEIERLEIN M., CONNORS B. W., 1999. Two networks of electrically coupled inhibitory neurons in neocortex. Nature 402, 75-79.
  • GIERDALSKI M., JABŁONSKA B., SIUCINSKA E., LECH M., SKIBINSKA A., KOSSUT M., 2001. Rapid regulation of GAD67 mRNA and protein level in cortical neurons after sensory learning. Cerebral Cortex 11, 806-815.
  • GLAZEWSKI S., CHEN C. M., SILVA A., FOX K., 1996. Requirement for alpha CaMKII in experience-dependent plasticity of the barrel cortex. Science 272, 421-423.
  • GLOOR P., 1992. Role of the amygdala in temporal lobe epilepsy. [W:] The Amygdala: Neurobiological Aspects of Emotion, Memory, and Mental Dysfunction. AGGLETON J. P. (red.), New York: New York Academic Press, New York.
  • GREENOUGH W. T., CHANG F. F., 1988. Dendritic pattern formation involves both oriented regression and oriented growth in the barrels of mouse somatosensory cortex. Dev. Brain Res. 43, 148-152.
  • HADA Y., YAMADA Y., IMAMURA K., MATAGA N., WATANABE Y., YAMAMOTO M., 1999. Effects of monocular enucleation on parvalbumin in rat visual system during postnatal development. Invest. Ophthalmol. Vis. Sci. 40, 2535-2545.
  • HAJOS N., PAPP E. C., ACSADY L., LEVEY A. I., FREUND T. F., 1998. Distinct interneuron types express m2 muscarinic receptor immunoreactivity on their dendrites or axon terminals in the hippocampus. Neuroscience 82, 355-376.
  • HASU C. C., THOMAS C., CHEN W., DAVIS K. M., FOOS T., CHEN J. L., WU E., FLOOR E., SCHLOSS J. V., WU J. Y., 1999. Role of synaptic vesicle proton gradient and protein phosphorylation on ATP-mediated activation of membrane-associated brain glutamate decarboxylase. J. Biol. Chem. 274, 24366-24371.
  • HAYASHI T., 1956. Chemical physiology of excitation in muscle and nerve. Nakayama-Shoten Ltd., Tokyo, 166.
  • HELMCHEN F., BORST J. G., SAKMANN B., 1997. Calcium dynamics associated with a single action potential in CNS presynaptic terminals. J. Biophys. 72, 1458-1471.
  • HENDRY S. H., JONES E. G., 1986. Reduction in number of immunostained GABAergic neurons in deprived-eye dominance columns of monkey area 17. Nature 320, 750-753.
  • HENDRY S. H., JONES E. G., 1988. Activity-dependent regulation of GABA expression in the visual cortex of adult monkeys. Neuron 1, 701-712.
  • HENDRY S. H., SCHWARK H. D., JONES E. G., YAN J., 1987. Numbers and proportions of GABA-immunoreactive neurons in different areas of monkey cerebral cortex. J. Neurosci. 7, 1503-15019.
  • HENDRY S. H., HUNTSMAN M. M., VINUELA A., MOHLER H., DE BLAS A. L., JONES E. G., 1990. Distribution and plasticity of immunocytochemical localized GABAA receptors in adult monkey visual cortex. J. Neurosci. 10, 2438-2450.
  • HENDRY S. H., Hutsman M. M., Vinuela A., MOHLER H., de Blas A. L., JONES E., 1994. GABAa receptor subunit immunoreactivity in primate visual cortex: Distribution in macaques and humans and regulation by visual input in adulthood. J. Neurosci. 14, 2383-2401.
  • HENSCH T. K., Fagolini M., Mataga N., STRYKER M., Baekkeskov S., KASH S. F., 1998. Local GABA Circuit control of experience-dependent plasticity in developing visual cortex. Science 282, 1504-1508.
  • HOUSER C. R., HENDRY S. H., JONES E. G., Vaughn J. E., 1983. Morphological diversity of immunocytochemical identified GABA neurons in the monkey sensory-motor cortex. J. Neurocytology 12, 617-638
  • HUNTSMAN M. M., Isackson P. J., JONES E., 1994. Lamina-specific expression and activity dependent regulation of Seven GABAa receptor subunit mRNAs in monkey visual cortex. J. Neurosci. 14, 2234-2259.
  • IVERSEN L. L., NEAL M. J., 1968. The uptake of [3H]GABA by slices of rat cerebral cortex. Neurochem. 15, 1141-1149.
  • JABLONSKA B., SKANGIEL-KRAMSKA J., 1995. Sensory conditioning and sensory stimulation do not affect GABA receptor binding in the barrel field A of mice. Acta Neurobiol. Exp. 55, 289-293.
  • JABLONSKA B., KOSSUT M., SKANGIEL-KRAMSKA J., 1996. Transient increase of AMPA and NMDA receptor binding in the barrel cortex of mice after tactile stimulation. Neurobiol Learn Mem. 66, 36-43.
  • JOHNSTON G. A., CURTIS D. R., BEART P. M., GAME C. J., MC CULLOCH R. M., TWITCHIN B., 1975. Cis- and trans-4-aminocrotonic acid as GABA analogues of restricted conformation. J. Neurochem. 24, 157-160.
  • JOHNSTON T. K., CHEN D. W., RICKMAN C., EVANS C., BRECHA N. C., 1996. Multiple gamma aminobutyric acid plasma membrane transporters (GAT1, GAT-2, GAT-3) in the rat retina. J. Comp. Neurol. 375, 212-224.
  • JONES E. G., 1993. GABAergic neurons and their role in cortical plasticity in primates. Cerebral Cortex 3, 361-371.
  • JONES E. G., HENDRY S. H., 1986. Co-localization of GABA and neuropeptides in neocortical neurons. Trends Neurosci. 9, 71-76.
  • Kaila K., 1994. Ionic basis of GABAA receptor channel function in the nervous System. Prog. Neurobiol. 42, 489-537.
  • KANNER B. I., KEYNAN S., RADIAN R., 1989. Structural and functional studies on the sodium- and chloride-coupled gamma-aminobutyric acid transporter: deglycolysation and limited proteolysis. Biochemistry. 28, 3722-3728.
  • KASH S. F., JOHNSON R. S., TECOTT L. H., NOEBELS J. L., MAYFIELD R. D., HANAHAN D., BAEKKESKOV S., 1997. Epilepsy in mice deficient in the 65-kDa isoform of glutamic acid decarboxylase. Proc. Natl. Acad. Sci. USA 94, 14060-14065.
  • KAUFMAN D. L., HOUSER C. R., TOBIN A. J., 1991. Two forms of the γ-aminobutyric acid synthetic enzyme glutamate decarboxylase have distinct intraneuronal distributions and cofactor interactions. J. Neurochem. 56, 720-723.
  • KAWAGUCHI Y., 1993. Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum. J. Neurosci. 13, 4908-4923.
  • KAWAGUCHI Y., KUBOTA Y., 1996. Physiological and morphological identification of somatostatin - or vasoactive intestinal polypeptide-containing cells among GABAergic cell subtypes in rat frontal cortex. J. Neurosci. 16, 2701-2715.
  • KAWAGUCHI Y., KUBOTA Y., 1997. GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cerebral Cortex 7, 476-86.
  • KAWAGUCHI Y., KUBOTA Y., 1998. Neurochemical features and synaptic connections of large physiologically-identified GABAergic cells in the rat frontal cortex. Neuroscience 85, 677 701.
  • KAWAGUCHI Y., KATSUMARU H., KOSSAKA T., HEIZMANN C. W., HAMA K., 1987. Fast spiking cells in rat hippocampus (CA1 region) containing the calcium-binding protein parvalbumin. Brain Res. 416, 368-374.
  • KATSUMARU H., KOSAKA C. W., HEIZMANN C. W., HAMA K., 1988. Gap junctions on GABAergic neurons containing the calcium - binding protein parvalbumin in the rat hippocampus (CA1 region). Exp. Brain. Res. 72, 363-370.
  • KELLER A., WHITE E. L., 1986. Distribution of glutamic-acid decarboxylase Immunoreactive structures in the barrel region of mouse somatosensory cortex. Neurosci. Lett. 66, 245-250.
  • KELLER A., WHITE E. L., CIPOLLONI P. B., 1985. The identification of thalamocortical axon terminals in barrels of mouse SmI cortex using immunocytochemistry of anterogradely transported lectin (Phaseolus vulgaris - leucoaglutinin). Brain Res. 343, 159-165.
  • KELLER A., ARONIADOU-ANDERJASKA V., 1996. Intrinsic inhibitory pathways in mouse barrel cortex. NeuroReport 7, 2363-2368.
  • KISER P. J., COOPER N. G. F., MOWER G. D., 1998. Expression of two forms of glutamic acid decarboxylase (GAD67 and GAD65) during postnatal development of rat somatosensory barrel cortex. J. Comp. Neurol. 402, 62-74.
  • KITA H., KOSSAKA T., HEIZMANN C. W., 1990. Parvalbumin-immunoreactive neurons in the rat: a light and electron microscopic study. Brain Res. 536,1-15.
  • KLAUSBERGER T., MAGILL P. J., MARTON L. F., ROBERTS J. D., COBDEN P. M., BUZSAKI G., SOMOGYI P., 2000. Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature 421, 844-848.
  • KLAUSBERGER T., ROBERTS J. D., SOMOGYI P., 2002. Cell type- and input-specific differences in the number and subtypes of synaptic GABA(A) receptors in the hippocampus. J. Neurosci. 22, 2513-2521.
  • KNOTT G. W., QUAIRIAUX C., GENOUD C., WELKER E., 2002. Formation of dendritic spines with GAB-Aergic synapses induced by whisker stimulation in adult mice. Neuron 34, 265-273.
  • KOSAKA T., KATSUMARU H., HAMA K., WU J. Y., HEIZMANN C. W., 1987. GABAergic neurons containing the Ca2+-binding protein parvalbumin in the rat hippocampus and dentate gyrus. Brain Res. 419, 119-130.
  • KOSSUT M., STEWART M. G., SIUCINSKA E., BOURNE R. C., GABBOTT P. L., 1991. Loss of γ-aminobutyric acid (GABA) immunoreactivity from mouse first somatosensory (SI) cortex following neonatal, but not adult denervation. Brain Res. 538, 165-170.
  • KRISHEK B. J., AMATO A., CONNOLLY C. N., MOSS S. J., SMART T. G., 1996. Proton sensitivity of the GABA(A) receptors associated with receptor subunit composition. J. Physiol. 492, 431-443.
  • KRISHEK B. J., MOSS S. J., SMART T. G., 1998. Interaction of H+ and Zn 2+ on recombinant and native rat neuronal GABA A receptors. J. Physiol. 507, 639-652.
  • KROHN K. T., ROTHE D., BIESOLD V., 1992. High-affinity uptake of GABA and glutamate decarboxylase activity in primary somatosensory cortex after sciatic nerve injury. Mol. Chem. Neuropathol. 16, 159-169.
  • KUBOTA Y., KAWAGUCHI Y., 1997. Two distinct subgroups of cholecystokinin-immunoreactive cortical interneurons. Brain Res. 752, 175-183.
  • KUBOTA Y., KAWAGUCHI Y., 2000. Dependence of GABAergic synaptic areas on the interneuron type and target size. J. Neurosci. 20, 375-386.
  • KUBOTA Y., MIKAWA S., KAWAGUCHI Y., 1993. Neostriatal GABAergic interneurons contain NOS, calretinin or parvalbumin. NeuroReport 5, 205-208.
  • LALONDE J., LACHANCE P. E., CHAUDHURI A., 2004. Monocular enucleation induces nuclear localization of calcium/calmodulin-dependent protein kinase IV in cortical interneurons of adult monkey area V1. J. Neurosci. 24, 554-564.
  • LAMBERT J. J., 1999. Neurosteroids: A new regulatory function in the nervous system. [W:] Contemporary endocrinology BAULIEU E. E. (red.), Humana Pres Inc.
  • LAW R. M., STAFFORD A., QUICK M. W., 2000. Functional regulation of gamma - aminobutyric acid transporters by direct tyrosine phosphorylation. J. Biol. Chem. 275, 23986-23991.
  • LAW R. M., STAFFORD A., QUICK M. W., 2000. Functional regulation of gamma-aminobutyric acid transporters by direct tyrosine phosphorylation. Biol Chem. 275, 23986-23991.
  • LECH M., SKIBINSKA A., KOSSUT M., 2001. Delayed up- regulation of GABA A alpha 1 receptor subunit mRNA in somatosensory cortex of mice following learning - dependent plasticity of cortical representations. Mol. Brain Res. 96, 82-86.
  • LECH M., SKIBINSKA A., SIUCINSKA E., KOSSUT M., 2005. Learning - induced plasticity of cortical representations does not affect GAD65 mRNA expression and immunolabeling of cortical neuropil. Brain Res.1044, 266-271.
  • LIU F., WAN Q., PRISTUPA Z. B., YU X. M., WANG Y. T., NIZNIK H. B., 2000. Direct protein-protein coupling ensembles cross-talk between D5 and gamma-aminobutyric acid A receptors. Nature 403, 274-280.
  • LORENTE DE NO R., 1938. Architectonics and structure of the cerebral cortex. [W:] Physiology of nervous system FULTON J. F. (red.), Oxford Univ. Press; London, 291-327.
  • LOW K., CRESTANI F., KEIST R., BENKE D., BRUNIG I., BENSON J. A., FRITSCHY J. M., RULICKE T., BLUETHMANN H., MOHLER H., RUDOLPH U., 2000. Molecular and neuronal substrate for the selective attenuation of anxiety. Science. 290, 131-134.
  • LU Y. M., MANSUY I. M., KANDEL E. R., RODER J., 2000. Calcineurin-mediated LTD of GABAergic inhibition underlies the increased excitability of CA1 neurons associated with LTP. Neuron. 1, 197-205.
  • LUHMAN H. J., PRINCE D. A., 1990. Control of NMDA receptor mediated activity by GABA ergic mechanisms in mature and developing rat neocortex. Dev. Brain Res. 54, 287-290.
  • MACDONALD R. L., OLSEN R. W., 1994. GABAA receptor channels. Annu. Rev. Neurosci. 17, 569-602.
  • MAIER D. L., MCCASLAND J. S., 1997. Calcium-binding protein phenotype defines metabolically distinct groups of neurons in barrel cortex of behaving hamsters. Exp. Neurol.145, 71-80.
  • MARKRAM H., RODRIGUEZ M. T., WANG Y., GUPTA A., SILBERBERG G., WU C., 2004. Interneurons of the neocortical inhibitory system. Nat. Rev. Neurosci. 10, 793-807.
  • MARTIN D. L., 1987. Regulatory properties of brain glutamate decarboxylase. Cell. Mol. Neurobiol 7, 237-253.
  • MARTIN D. L., RIMVALL K., 1993. Regulation of γ-aminobutyric acid synthesis in the brain. J. Neurochem. 60, 395-407.
  • MATYAS F., FREUND T. F., GULYAS A. I., 2004. Convergence of excitatory and inhibitory inputs onto CCK-containing basket cells in the CA1 area of the rat hippocampus. Eur. J. Neurosci. 19, 1243-1256.
  • MCCASLAND J. S., 1996. Metabolic activity in antigenically identified neurons: a double labelling method for high-resolution 2-deoxyglucose and immunohistochemistry. J. Neurosci. Methods. 68, 113-123.
  • MCCASLAND J. S., HIBBARD L. S., 1997. GABAergic neurons in barrel cortex show strong, whisker-dependent metabolic activation during normal behavior. J. Neurosci. 17, 5504-5527.
  • MCCORNIK D. A., WANG Z., HUGENARD J., 1993. Neurotransmitter control of neocortical neuronal activity and excitability. Cerebral Cortex 3, 387-398.
  • MEHTA A. K., TICKU M. K., 1999. An update on GABA AA receptors. Brain Res. Rev. 29, 196-217.
  • MERCUGLIANO M., SOGHOMONIAN J. J., QIN Y., NGUYEN H. Q., FELDBLUM S., ERLANDER M. G., TOBIN A. J., CHESSELET M. F., 1992. Comparative distribution of messenger RNAs encoding glutamic acid decarboxylases (Mr 65,000 and Mr 67,000) in the basal ganglia of the rat. J. Comp. Neurol. 318, 245-254.
  • MICHEVA K. D., BEAULIEU C., 1995. Neonatal sensory deprivation induces selective changes in quantitative distribution induces of GABA-immunore-active neurons in the rat barrel field cortex. J. Comp. Neurol. 361, 574-584.
  • MILES M., TÓTH K., GULY'AS A. I., H'AJOS N., FREUND T. F., 1996. Differences between somatic and dendritic inhibition in the hippocampus. Neuron 16, 815-823.
  • MILLIGAN C. J., BUCKLEY N. J., GARRET M., DEUCHARS J., DEUCHARS S. A., 2004. Evidence for inhibition mediated by co assembly of GABAA and GABA C Receptor subunits in native central neurons. J. Neurosci. 24, 9241-9250.
  • MINELLI A., DEBIASI S., BRECHA N. C., ZUCCARELLO L. V., CONTI F., 1996. GAT-3, a high affinity GABA plasma membrane transporter, is localized to astrocytic processes, and it is confined to the vicinity of GABAergic synapses in the cerebral cortex. J. Neurosci. 16, 6255-6264.
  • MODY I., 2005. Aspects of the homeostatic plasticity of GABAA receptor-mediated inhibition. J Physiol. 562, 37-46.
  • MOHLER H., FRITSCHY J. M., CRESTANI F., HENSCH T., RUDOLPH U., 2004. Specific GABA(A) circuits in brain development and therapy. Biochem Pharmacol. 68, 1685-1690.
  • MOWER G. D., GUO Y., 2001. Comparison of the expression of two forms of glutamic acid decarboxylase (GAD67 and GAD65) in the visual cortex of normal and dark-reared cats. Dev. Brain Res. 126, 65-74.
  • MOWER G. D., WHITE R., RUSTAD R., 1986. [3H] muscimol binding of GABA receptors in the visual cortex of normal and monocular deprived cats. Brain Res. 380, 253-260.
  • NAMCHUK M., LINDSAY L., TUREK C. W., KANAANI J., BAEKKESKOV S., 1997. Phosphorylation of serine residues 3,6,10, and 13 distinguishes membrane anchored from soluble glutamic acid decarboxylase 65 and is restricted to glutamic acid decarboxylase 65 alpha. J. Biol. Chem. 272, 1548-1557.
  • NUSSER Z., SIEGHART W., BENKE D., FRITSCHY J. M., SOMOGYI P., 1996. Differential synaptic localization of two major gamma-aminobutyric acid type A receptor alpha subunits on hippocampal pyramidal cells. Proc. Natl. Acad. Sci. USA 93, 11939-11944.
  • NUSSER Z., SIEGHART W., SOMOGYI P., 1998a. Segregation of different GABAA receptors to synaptic and extrasynaptic membranes of cerebellar granule cells. J. Neurosci. 18, 1693-1703.
  • NUSSER Z., HAJOS N., SOMOGYI P., MODY I., 1998b. Increased number of synaptic GABA(A) receptors underlies potentiation at hippocampal inhibitory synapses. Nature 395, 172-177.
  • OLSEN R. W., 1999. GABA receptor function and epilepsy. Adv. Neurol. 79, 499-510.
  • PAWELZIK H., HUGHES D. I., THOMSON A. M., 2002. Physiological and morphological diversity of immunocytochemical defined parvalbumin and cholecystokinin-positive interneurons in CA1 of the adult rat hippocampus. J. Comp. Neurol. 443, 346-367.
  • PENG Z., HUANG C. S., STELL B. M., MODY I., HOUSER C. R.,2004. Altered expression of the delta subunit of the GABAA receptor in a mouse model of temporal lobe epilepsy. J Neurosci. 24, 8629-8639.
  • PETERS A., POLAY S. L., WEBSTER D., 1991. The fine structure of the nervous system. Neurons and their supporting cells. Oxford University Press. Oxford.
  • PLOGMANN D., CELIO M. R., 1993. Intracellular concentration of parvalbumin in nerve cells. Brain Res. 600, 273-279.
  • POISBEAU P., CHENEY M. C., BROWNING M. D., MODY I., 1999. Modulation of synaptic GABAA receptor function by PKA and PKC in adult hippocampal neurons. J. Neurosci. 19, 674-683.
  • POLENZANI L., WOODWARD R. M., MILEDI R., 1991. Expression of mammalian Gamma-aminobutyric acid receptors with distinct pharmacology in Xenopus oocytes. Proc. Natl. Acad. Sci. USA 88, 4318-4322.
  • REN J. Q., AIKA Y. A., HEIZMANN C. W., KOSAKA T., 1992. Quantitative analysis of neurons and glial cells in the rat somatosensory cortex, with special reference to GABAergic neurons and parvalbumin-containing neurons. Exp. Brain Res. 92, 1-14.
  • RIBAK C. E., 1978. Aspinous and sparsely-spinous stellate neurons in the visual cortex of rats contain glutamic acid decarboxylase. J. Neurocytol. 7, 461-478.
  • RITTENHOUSE C. D., SHOUVAL H. Z., PARADISO M. A., BEAR M. F., 1999. Monocular deprivation induces homosynaptic long-term depression in visual cortex. Nature 397, 347-350.
  • ROGERS J. H., 1992. Immunohistochemical markers in cortex: co-localization of calretinin and calbindin-D28K with neuropeptides and GABA. Brain Res. 587, 147-157.
  • ROZOV A., BURNASHEV N., SAKMANN B., NEHER E., 2001. Transmitter release modulation by intercellular Ca2+ buffers in facilitating and depressing nerve terminals of pyramidal cells in layer 2/3 of the rat neocortex indicates a target cell-specific difference in presynaptic calcium dynamics. J. Physiol. 531, 807-826.
  • RUDOLPH U., CRESTANI F., BENKE D., BRUNIG I., BENSON J. A., FRITSCHY J. M., MARTIN J. R., BLUETHMANN H., MOHLER H., 1999. Benzodiazepine actions mediated by specific gamma-aminobutyric acid (A) receptor subtypes. Nature 401, 796-800. RUDOLPH U., CRESTANI F., MOHLER H., 2001. GABA A receptor subtypes: dissecting their pharmacological functions. Trends Pharmacol. Sci. 22, 188-194.
  • SALIN P. A., PRINCE D. A., 1996. Spontaneous GABA_A receptor-mediated inhibitory currents in adult rat somatosensory cortex. J. Neurophysiol. 75, 1573-1588.
  • SAXENA N. C., MACDONALD R. L., 1994. Assembly of GABAA receptor subunits: role of the delta subunit. J. Neurosci. 14, 7077-7086.
  • SCHWALLER B., TETKO I. V., TANDON P., SILVEIRA D. C., VREUGDENHIL M., HENZI T., POTIER M. C., CELIO M. R., VILLA A. E. P., 2004. Parvalbumin deficiency affects network properties resulting in increased susceptibility to epileptic seizures. Mol. Cell. Neurosci. 25, 650-663.
  • SHAW C., CYNADER M., 1988. Unilateral eyelid suture increases GABAa receptors in cat visual cortex. Brain Res. 468, 148-153.
  • SHLOSBERG D., PATRICK S. L., BUSKILA Y., AMITAI Y., 2003. Inhibitory effect of mouse neocortex layer I on the underlying cellular network. Eur. J. Neurosci 18, 2751-2759.
  • SILVER A., STRYKER M., 2000. Distributions of synaptic vesicle proteins and GAD65 in deprived and nondeprived ocular dominance columns in layer IV of kitten primary visual cortex are unaffected by monocular deprivation. J. Comp. Neurol. 422, 652-664.
  • SIMONS D. J., CARVELL G. E., 1989. Thalamocortical response transformation in rat vibrissa/barrel system. J. Neurophysiol. 61, 311-330.
  • SIUCINSKA E., 2003. Learning-dependent modifications of mature somatosensory cortex may be associated with increase in number of GAD immunoreactive puncta. IBRO. 4197, 429.
  • SIUCINSKA E., 2004. Parvalbumin neurons in barrel cortex of adult mice after short lasting aversive learning. FENS. 190.17.
  • SIUCINSKA E., KOSSUT M., 1994a. Short term changes of cortical body maps following partial vibrissectomy in adult mice. Acta Neurobiol. Exp. 54, 345-354.
  • SIUCINSKA E., KOSSUT M., 1994b. Plasticity of mystacial fur representation in SI cortex of adult vibrissectomized rats - a 2DG study. NeuroReport 5, 1605-1608.
  • SIUCINSKA E., KOSSUT M., 1996. Short - lasting classical conditioning induces reversible changes of representation maps of vibrissae in mouse SI cortex - a 2DG study. Cerebral Cortex 6, 506-513.
  • SIUCINSKA E., KOSSUT M., STEWART M. G., 1999. GABA immunoreactivity in Mouse barrel field after aversive and appetitive classical conditioning training involving facial vibrissae. Brain Res. 843, 62-70.
  • SKANGIEL-KRAMSKA J., KOSSUT M., 1984. Increase of GABA receptor binding activity after short lasting monocular deprivation in kittens. Acta Neurobiol. Exp. 44, 33-39.
  • SKANGIEL-KRAMSKA J., GLAZEWSKI S., JABLONSKA B., SIUCINSKA E., KOSSUT M., 1994. Reduction of GABAAreceptor binding of (H3) muscimol in the barrel field of mice after peripheral denervation: transcient and long-lasting effects. Exp. Brain Res. 100, 39-46.
  • SKIBINSKA A., LECH M., KOSSUT M., 2001. PSD 95 protein level rises in murine somatosensory cortex after sensory training. NeuroReport 12, 2907-2910.
  • SLOVITER R. S., 1999. Status epilepticus-induced neuronal injury and network reorganization. Epilepsy 40, 34-41.
  • SMART T. G., HOSIE A. M., MILLER P. S., 2004. Zn2+ Ions: modulators of excitatory and inhibitory synaptic activity. Neuroscient. 10, 432-442.
  • SNOW P. J., NUDO R. J., RIVERS W., JENKINS W. M., MERCENICH M. M., 1988. Somatotopicall inappropriate projections from thalamocortical neurons to the SI cortex of the cat demonstrated by the use of intracortical microstimulation. Somatosensory Res. 5, 349-372.
  • SOKOLOFF L., REIVICH M., KENNEDY C., DES ROSIERS M. H., PATLAK C. S., PETTIGREW K. D., SAKURADA O., SHINOHARA M., 1977. The (14C)-deoxyglucose method for measurement of local cerebral glucose utilization: theory, procedure and normal values in conscious and anesthetized albino rat. J. Neurochem. 28, 897-916.
  • SOLTESZ I., DESCHENES M., 1993. LOW- and high-frequency membrane potential oscillations during theta activity in CA1 and CA3 pyramidal neurons of the rat hippocampus under ketamine-xylazine anesthesia. J. Neurophysiol. 70, 97-116.
  • STAIGER J. F., ZILLES K., FREUND T. F., 1996. Distribution of GABAergic elements postsynaptic to ventroposteromedial thalamic projections in layer IV of rat barrel cortex. Eur. J. Neurosci. 11, 2273-2285.
  • STAIGER J. F., MASANNECK C., BISLER S., SCHLEICHER A., ZUSCHRATTER W., ZILLES K., 2002. Excitatory and inhibitory neurons express c-Fos in barrel-related columns after exploration of a novel environment. Neuroscience 109, 687-699.
  • STALEY K. J., MODY I., 1992. Shunting of excitatory input to dentate gyrus granule cells by a depolarizing GABAA receptor-mediated postsynaptic conductance. J. Neurophysiol. 68, 197-212.
  • STEWART M. G., SIUCINSKA E., KOSSUT M., DAVIES H., 1993. Loss of glutamate immunoreactivity from mouse first somatosensory (SI) cortex following neonatal vibrissal lesion. Brain Res. 62, 331-338.
  • SUNDSTROM-POROMMA I., SMITH D. H., GONG Q. H., SABADO T. N., LI X., LIGHT A., WIEDMANN M., WILLIAMS K., SMITH S. S., 2002. Hormonally regulated alpha 4/ beta 2/ delta GABAA receptors are target for alcohol. Nat. Neurosci. 5, 721-722.
  • TAMAS G., LORINCZ A., SIMON A., SZABADICS J., 2003. Identified sources and targets of slow inhibition in the neocortex. Science 299, 1902-1905.
  • TAMMINGA C., HASHIMOTO T., VOLK D. W., LEWIS D. A., 2004. GABA neurons in the human prefrontal cortex. Am. J. Psychiatry. 161, 1764.
  • THOMSON A. M., DESTEXHE A., 1999. Dual intracellular recordings and computational models of slow inhibitory postsynaptic potentials in rat neocortical and hippocampal slices. Neuroscience 92, 1193-1215.
  • THOMSON A. M., BANNISTER A. P., HUGHES D. I., PAWELZIK H., 2000. Differential sensitivity to Zolpidem of IPSPs activated by morphologically identified CA1 interneurons in slices of rat hippocampus. Eur. J. Neurosci. 12, 425-436. TODTENKOPF M. S., STELLAR J. R., WILLIAMS E. A., ZAHM D. S., 2004. Differential distribution of parvalbumin immunoreactive neurons in the striatum of cocaine sensitised rats. Neuroscience 127, 35-42.
  • TRAUB R. D., SPRUSTON N., SOLTESZ I., KONNERTH A., WHITTINGTON M. A., JEFFERYS G. R., 1998. Gamma-frequency oscillations: a neuronal population phenomenon, regulated by synaptic and intrinsic cellular processes, and inducing synaptic plasticity. Prog. Neurobiol. 55, 563-75.
  • TRAUB R. D., JEFFERYS J. G., WHITTINGTON M. A., 1999. Fast Oscilations in Cortical Circuits. Mit Press, Cambridge, MA. Varoqui H., Zhu H., Yao D., Ming H., Erickson J. D., 2000. Cloning and functional identification of a neuronal glutamine transporter. J. Biol. Chem. 275, 4049-4054.
  • VINCENT S. L., HOKFELT T., SKIRBOLL L. R., WU J. Y., 1983. Hypothalamic gamma-aminobutyric acid neurons project to the neocortex. Science 220, 1309-1311.
  • VOGT B. A., 1991. The role of layer I in cortical function. [W:] PETERS A. (red.), Cerebral Cortex. Plenum Press., New York, 4980.
  • VREUGDENHIL M., JEFFERYS J. G., CELIO M. R., SCHWALLER B., 2003. Parvalbumin-deficiency facilitates receptive IPSCs and gamma oscillations in the hippocampus. J. Neurophysiol. 89, 1414-1422.
  • WAFFORD K. A., BURNETT D. M., LEIDENHEIMER N. J., BURT D. R., WANG J. B., KOFUJI P., DUNWIDDIE T. V., HARRIS R. A., SIKELA J. M., 1991. Ethanol sensitivity of the GABA A receptor expressed in Xenopus oocytes requires 8 amino acids contained in the gamma 2L subunit. Neuron 7, 27-33.
  • WALL J. T., 1988. Variable organization in cortical maps of the skin as an indication of lifelong adaptive capacities of circuits in the mammalian brain. TINS 11, 549-557.
  • WAN Q., XIONG Z. G., MAN H. Y., ACKERLEY C. A., BRAUNTON J., LU W. Y., BECKER L. E., MACDONALD J. F., WANG Y. T., 1997. Recruitment of functional GABA(A) receptors postsynaptic domains by insulin. Nature 388, 686-690.
  • WANG J., LIU S., HADITSCH U., TU W., COCHRANE K., AHMADIAN G., TRAN L., PAW J., WANG Y., MANSUY I., SALTER M. M., LU Y. M., 2003. Interaction of calcineurin and type-A GABA receptor gamma 2 subunits produce long-term depression at CA1 inhibitory synapses. J. Neurosci. 23, 826-836.
  • WANG Y., GUPTA A., TOLEDO-RODRIGUEZ M., WU C., MARKRAM H., 2002. Anatomical, physiological, molecular and circuit properties of nest basket cells in the developing somatosensory cortex. Cerebral Cortex 12, 395-410.
  • WANG Y., TOLEDO-RODRIGUEZ M., GUPTA A., WU C., SILBERG G., LUO J., MARKRAM H., 2004. Anatomical, physiological and molecular properties of Martinotti cells in the somatosensory cortex of the juvenile rat. J. Physiol. 561, 65-90.
  • WELKER E., SORIANO E., VAN DER LOOS H., 1989a. Plasticity in the barrel cortex of the adult mouse: effects of peripheral deprivation on GAD-immuno-reactivity. Exp Brain Res.74, 441-452.
  • WELKER E., SORIANO E., VAN DER LOOS H., 1989b. Plasticity in barrel cortex of the adult mouse: transient increase of GAD-immunoreactivity following sensory stimulation. Exp. Brain Res. 78, 659-664.
  • WHITING P. J., BONNERT T. P., MC KERNAN R. M., FARRAR S., LE BOURDELLES B., HEAVENS R. P., SMITH D. W., HEWSON L., RIGBY M. R., SIRINATHSINGHJI D. J., THOMPSON S. A., WAFFORD K. A., 1999. Molecular and functional diversity of the expanding GABAA receptor gene family. Ann. NY. Acad. Sci. USA 868, 645-653.
  • WILLIAMS S. M., GOLDMAN-RAKIC P. S., LERANTH C., 1992. The synaptology of parvalbumin-immunoreactive neurons in the primate prefrontal cortex. J. Comp. Neurol. 320, 353-369.
  • WISDEN W., LAURIE D. J., MONYER H., SEEBURG P. H., 1992. The distribution of 13 GABA A receptor subunit mRNAs in the rat brain. I. Telencephalon, diencephalons, mesencephalon. J. Neurosci. 12, 1040-1062.
  • WISDEN W., COPE D., KLAUSBERGER T., HAUER B., SINKKONEN S. T., TRETTER V., LUJAN R., JONES A., KORPI E. R., MODY I., SIEGHART W., SOMOGYI P., 2002. Ectopic expression of the GABA(A) receptor alpha6 subunit in hippocampal pyramidal neurons produces extrasynaptic receptors and an increased tonic inhibition. Neuropharmacology 43, 530-549.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv54p195kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.