EN
The quantum transfer-matrix method was applied to study the finite-temperature static properties of the spin S=1 antiferromagnetic Heisenberg chains in a wide range of the single-ion anisotropy and temperatures. The high-resolution quantum transfer-matrix simulation data are obtained for the zero-field susceptibility, specific heat as well as for the field-dependent magnetization. The microscopic parameters of a number of real quasi-one-dimensional compounds are found from fitting procedures, some theoretical approaches are numerically verified and an extension of the technique to a non-uniform bond alternating molecular magnets is also put forward.