Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
1996 | 90 | 4 | 635-644

Article title

Doping and Characterization of Wide-Gap II-VI Epilayers

Content

Title variants

Languages of publication

EN

Abstracts

EN
In this paper we review the properties of n-type doped ZnSe and CdTe epilayers grown by molecular beam epitaxy on (100) GaAs substrates. Recent results of photoluminescence, transport measurements, secondary ion mass spectroscopy and deep-level transient spectroscopy are discussed. A major emphasis is placed on the effect of different dopant species and the role of the deviation from stoichiometry on the doped epitaxial layers. Since deep defect states play an important role in determining the properties of the doped materials, considerable attention is directed towards characterization and identification of deep-lying defect states, both native and introduced by dopants. In particular, in the case of ZnSe the deep-level transient spectroscopy results clarify why Cl is superior to Ga as an effective n-type dopant. They provide strong evidence that chlorine - unlike Ga - does not introduce by itself any detectable deep defects into the ZnSe lattice. In the case of CdTe, we focus on the influence of the deviation from stoichiometric growth conditions in the molecular beam epitaxy process and on the properties of In doped layers. We discuss resistivity, Mn diffusivity and the presence of various deep defects in layers grown at different Cd/Te flux ratios.

Keywords

EN

Contributors

author
  • Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warszawa, Poland
author
  • Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warszawa, Poland

References

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv90z405kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.