As of 1 April 2026, the PSJD database will become an archive and will no longer accept new data. Current publications from Polish scientific journals are available through the Library of Science: https://bibliotekanauki.pl
Water-sorption processes near grain boundaries in the MgO-Al₂O₃ ceramics prepared at different temperatures were studied using positron annihilation lifetime spectroscopy. Numerical values of three- and four-component treatment of spectra were used for study of physical- and chemical-sorption processes in the MgO-Al₂O₃ ceramics. To apply mathematical approach in the form of positron-positronium trapping algorithm into three-component treatment of positron annihilation lifetime spectra it was shown that physical-adsorbed water did not modify positron trapping sites near grain boundaries in water-immersed MgO-Al₂O₃ ceramics and localized mainly in nanopores. The chemically-adsorbed water modifies structural extended defects located near grain boundaries that accompanied them by void fragmentation at water desorption.
[3] G. Gusmano, G. Montesperelli, E. Traversa, A. Bearzotti, G. Petrocco, A. D'amico, C. Di Natale, Sensors Actuat. B Chem. 7, 460 (1992) , doi: 10.1016/0925-4005(92)80344-W
[4] G. Gusmano, G. Montesperelli, E. Traversa, G. Mattogno, J. Am. Ceram. Soc. 76, 743 (1993) , doi: 10.1111/j.1151-2916.1993.tb03669.x
[6] M.A. Kashi, A. Ramazani, H. Abbasian, A. Khayyatian, Sensors Actuat. A 174, 69 (2012) , doi: 10.1016/j.sna.2011.11.033
[7] H. Klym, A. Ingram, I. Hadzaman, O. Shpotyuk, Ceram. Int. 40, 8561 (2014) , doi: 10.1016/j.ceramint.2014.01.070
[8] H. Klym, A. Ingram, O. Shpotyuk, J. Filipecki, I. Hadzaman, J. Phys. Conf. Ser. 289, 012010 (2011)
[9] H. Klym, A. Ingram, J. Phys. Conf. Ser. 79, 012014 (2007) , doi: 10.1088/1742-6596/79/1/012014
[10] J. Filipecki, A. Ingram, H. Klym, O. Shpotyuk, M. Vakiv, J. Phys. Conf. Ser. 79, 012015 (2007) , doi: 10.1088/1742-6596/79/1/012015
[11] H. Klym, I. Hadzaman, O. Shpotyuk, Mater. Sci. 21, 92 (2014) , doi: 10.5755/j01.ms.21.1.5189
[12] I. Karbovnyk, I. Bolesta, I. Rovetski, S. Velgosh, H. Klym, Mater. Sci. - Poland 32, 391 (2014) , doi: 10.2478/s13536-014-0215-z
[13] A. Bondarchuk, O. Shpotyuk, A. Glot, H. Klym, Rev. Mexic. Fis. 58, 313 (2012) http://scielo.org.mx/pdf/rmf/v58n4/v58n4a5.pdf
[14] R. Golovchak, Sh. Wang, H. Jain, A. Ingram, J. Mater. Res. 27, 2561 (2012) , doi: 10.1557/jmr.2012.252
[15] Y. Kobayashi, K. Ito, T. Oka, K. Hirata, Radiat. Phys. Chem. 76, 224 (2007) , doi: 10.1016/j.radphyschem.2006.03.042
[16] R. Krause-Rehberg, H.S. Leipner, Positron Annihilation in Semiconductors. Defect Studies, Springer, Berlin 1999
[17] H. Klym, A. Ingram, O. Shpotyuk, I. Hadzaman, V. Solntsev, Nanoscale Res. Lett. 11, 133 (2016) , doi: 10.1186/s11671-016-1352-6
[18] O. Shpotyuk, J. Filipecki, A. Ingram, R. Golovchak, M. Vakiv, H. Klym, V. Balitska, M. Shpotyuk, A. Kozdras, Nanoscale Res. Lett. 10, 77 (2015) , doi: 10.1186/s11671-015-0764-z
[19] H. Klym, I. Hadzaman, O. Shpotyuk, M. Brunner, Nanoscale Res. Lett. 9, 149 (2014) , doi: 10.1186/1556-276X-9-149
[20] J. Kansy, Nucl. Instrum. Methods Phys. Res. A 374, 235 (1996) , doi: 10.1016/0168-9002(96)00075-7
[22] P.M.G. Nambissan, C. Upadhyay, H.C. Verma, J. Appl. Phys. 93, 6320 (2003) , doi: 10.1063/1.1569973
[23] H. Klym, A. Ingram, O. Shpotyuk, L. Calvez, E. Petracovschi, B. Kulyk, R. Serkiz, R. Szatanik, Nanoscale Res. Lett. 10, 49 (2015) , doi: 10.1186/s11671-015-0775-9
[24] S. Chakraverty, S. Mitra, K. Mandal, P.M.G. Nambissan, S. Chattopadhyay, Phys. Rev. B 71, 024115 (2005) , doi: 10.1103/PhysRevB.71.024115
[25] S. Mitra, K. Mandal, S. Sinha, P.M.G. Nambissan, S. Kumar, J. Phys. D Appl. Phys. 39, 4228 (2006) , doi: 10.1088/0022-3727/39/19/016
[26] Y.C. Jean, P.E. Mallon, D.M. Schrader, Principles and Application of Positron and Positronium Chemistry, World Sci., New Jersey 2003