Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 133 | 3 | 538-540

Article title

Giant Magnetoresistance and Shubnikov-de Haas Effect in LuSb

Content

Title variants

Languages of publication

EN

Abstracts

EN
Single-crystals of LuSb were investigated by means of electrical resistivity and magnetoresistance measurements. The compound was found to exhibit giant magnetoresistance exceeding 3000%, low-temperature resistivity plateau, and Shubnikov-de Haas oscillations. It was characterized as a semimetal with nearly balanced contributions of electron and hole carriers to the magnetotransport properties. The experimental findings, supported by the results of electronic structure calculations, proved that the magnetotransport in LuSb can be described in the scope of 3D multi-band Fermi surface model without topologically non-trivial electronic states.

Keywords

EN

Contributors

author
  • Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław, Poland
author
  • Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław, Poland
author
  • Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław, Poland
  • Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław, Poland
  • Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław, Poland

References

  • [1] M. Zeng et al., arXiv: 1504.03492 (2015) http://arXiv.org/abs/1504.03492
  • [2] J. Nayak et al., Nat. Commun. 8, 13942 (2017), doi: 10.1038/ncomms13942
  • [3] G. Pagare et al., Comput. Mater. Sci. 50, 538 (2010), doi: 10.1016/j.commatsci.2010.09.016
  • [4] G. Pagare et al., J. Phys. Conf. Ser. 215, 012114 (2010), doi: 10.1088/1742-6596/215/1/012114
  • [5] R.J. Birgeneau et al., Phys. Rev. B 8, 5345 (1973), doi: 10.1103/PhysRevB.8.5345
  • [6] I. Shirotani, et al., Phys. Rev. B 64, 132101 (2001), doi: 10.1103/PhysRevB.64.132101
  • [7] O. Pavlosiuk, P. Swatek, P. Wiśniewski, Sci. Rep. 6, 38691 (2016), doi: 10.1038/srep38691
  • [8] F.F. Tafti, et al., Nat. Phys. 12, 272 (2016), doi: 10.1038/nphys3581
  • [9] A. Hasegawa, J. Phys. Soc. Jpn. 54, 677 (1985), doi: 10.1143/JPSJ.54.677
  • [10] P. Blaha et al., WIEN2K, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, Techn. Universität Wien, Austria 2001 http://susi.theochem.tuwien.ac.at/index.html
  • [11] A. Kokalj, Comp. Mater. Sci. 28, 155 (2003) doi: 10.1016/S0927-0256(03)00104-6; code available from http://xcrysden.org

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv133n3p063kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.