Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 5 | 1624-1627

Article title

Using a Bent Tube as an Energy Filter for a Positron Beam. Simulations on Determining the Optimum Angle of the Bend

Content

Title variants

Languages of publication

EN

Abstracts

EN
One way to perform lifetime measurements at a DC positron beam is to pass positrons through a pulsing device. The compressed e⁺ bunches are accelerated to a desired energy for depth profiling of the studied sample. A fraction of the e⁺ that are backscattered from the sample surface can travel back through the uniform magnetic field that is generated along the central axis of the beam transport lines and reach the accelerator. The backscattered e⁺ that reach the accelerator can be re-accelerated towards the sample and re-implant in it with a delay from the initial implanted e⁺ bunch. These e⁺ that are re-implanted into the sample with a delay cause distortions in the lifetime spectra. A setup which uses a bent tube to act as an energy filter to reduce the effect of the backscattered e⁺ is studied by simulations. The simulations are performed in order to find the optimum geometry for minimum distortions.

Keywords

EN

Contributors

author
  • University Politehnica of Bucharest, Faculty of Applied Sciences, Splaiul Independentei, no. 313, 060042, Bucuresti, Romania
  • Extreme Light Infrastructure - Nuclear Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, 30 Reactorului Str., 077125 Magurele, Ilfov county, Romania
author
  • University Politehnica of Bucharest, Faculty of Applied Sciences, Splaiul Independentei, no. 313, 060042, Bucuresti, Romania

References

  • [1] N. Djourelov, C. Hugenschmidt, S. Balascuta, V. Leca, A. Oprisa, C. Piochacz, C. Teodorescu, C.A. Ur, Rom. Rep. Phys. 68, S735 (2016)
  • [2] N. Djourelov, D. Dinescu, J. Phys. Conf. Ser. 791, 012010 (2017), doi: 10.1088/1742-6596/791/1/012010
  • [3] W. Egger, P. Sperr, G. Kögel, G. Dollinger, Phys. Status Solidi C 4, 3969 (2007), doi: 10.1002/pssc.200675812
  • [4] A. Pelli, A. Laakso, K. Rytsölä, K. Saarinen, Appl. Surf. Sci. 252, 3143 (2006), doi: 10.1016/j.apsusc.2005.08.054
  • [5] M. Jungmann, J. Haeberle, R. Krause-Rehberg, W. Anwand, M. Butterling, A. Wagner, J.M. Johnson, T.E. Cowan, J. Phys. Conf. Ser. 443, 012088 (2013), doi: 10.1088/1742-6596/443/1/012088
  • [6] J. Makinen, S. Palko, J. Martikainen, P. Hautojarvi, J. Phys. Condens. Matter 4, L503 (1992), doi: 10.1088/0953-8984/4/36/006
  • [7] K. Fallström, T. Laine, Appl. Surf. Sci. 149, 44 (1999), doi: 10.1016/S0169-4332(99)00170-1
  • [8] D. Dinescu, N. Djourelov, U.P.B. Sci. Bull., submitted for publication
  • [9] J. Kansy, Nucl. Instrum. Methods Phys. Res. A 374, 235 (1996), doi: 10.1016/0168-9002(96)00075-7

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv132n5p42kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.