Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 1 | 146-148

Article title

Electrical Conductivity of Ethylene Glycol Based Nanofluids with Different Types of Thulium Oxide Nanoparticles

Content

Title variants

Languages of publication

EN

Abstracts

EN
The paper presents experimental investigation on electrical conductivity of thulium oxides-ethylene glycol (Tm₂O₃-EG) nanofluids based on nanoparticles with three different sizes, and prepared in different conditions. Nanofluids were prepared with two-step method with use of the nanoparticles obtained by precipitation method. Measurements were conducted at constant temperature 293.15 K for various mass concentrations from 0% to 20% with 5% step. The electrical conductivity was measured using conductivity meter MultiLine 3410 (WTW GmBH, Weilheim, Germany) and temperature was stabilized in a water bath MLL 547 (AJL Electronic, Cracow, Poland). The results indicate that increase in mass concentration of nanoparticles in base fluid causes increase in electrical conductivity of Tm₂O₃-EG nanofluids. The enhancement in electrical conductivity of nanosuspensions of thulium oxide is dependent on particle size.

Keywords

Contributors

author
  • Department of Physics and Medical Engineering, Rzeszów University of Technology, Rzeszów, Poland
author
  • Institute of Electronic Materials Technology, Warsaw, Poland
author
  • Department of Physics and Medical Engineering, Rzeszów University of Technology, Rzeszów, Poland

References

  • [1] G. Huminic, A. Huminic, Renew. Sustain. Energy Rev. 16, 5625 (2012), doi: 10.1016/j.rser.2012.05.023
  • [2] N. Putra, Yanuar, F.N. Iskandar, Exp. Therm. Fluid Sci. 35, 1274 (2011), doi: 10.1016/j.expthermflusci.2011.04.015
  • [3] D. Wen, G. Lin, S. Vafaei, K. Zhang, Particuology 7, 141 (2009), doi: 10.1016/j.partic.2009.01.007
  • [4] M. Hojjat, S. Etemad, R. Bagheri, J. Thibault, Int. Commun. Heat Mass 38, 144 (2011), doi: 10.1016/j.icheatmasstransfer.2010.11.019
  • [5] A.K. Sharma, A.K. Tiwari, A.R. Dixit, Renew. Sustain. Energy Rev. 53, 779 (2016), doi: 10.1016/j.rser.2015.09.033
  • [6] S. Thomas, C. Balakrishna Panicker Sobhan, Nanoscale Res. Lett. 6, 377 (2011), doi: 10.1186/1556-276X-6-377
  • [7] H. Xie, W. Yu, Y. Li, J. Phys. D Appl. Phys. 42, 095413 (2009), doi: 10.1088/0022-3727/42/9/095413
  • [8] K. Prekas, T. Shah, N. Soin, M. Rangoussi, S. Vassiliadis, E. Siores, J. Coll. Interface Sci. 401, 58 (2013), doi: 10.1016/j.jcis.2013.03.040
  • [9] T. Brehm, G. Pereira, C.R. Leal, C. Gonsalves, J.P. Borges, M.T. Cidade, Phys. Scr. 90, 035802 (2015), doi: 10.1088/0031-8949/90/3/035802
  • [10] M. Dong, L.P. Shen, H. Wang, H.B. Wang, J. Miao, J. Nanomater. 2013, 1 (2013), doi: 10.1155/2013/842963
  • [11] S. Ganguly, S. Sikdar, S. Basu, Powder Technol. 196, 326 (2009), doi: 10.1016/j.powtec.2009.08.010
  • [12] H. Konakanchi, R. Vajjha, D. Misra, D. Das, J. Nanosci. Nanotechnol. 11, 6788 (2011), doi: 10.1166/jnn.2011.4217
  • [13] M. Kole, T. Dey, J. Appl. Phys. 113, 084307 (2013), doi: 10.1063/1.4793581
  • [14] M. Hadadian, E.K. Goharshadi, A. Youssefi, J. Nanopart. Res. 16, 2788 (2014), doi: 10.1007/s11051-014-2788-1
  • [15] E.K. Goharshadi, H. Azizi-Toupkanloo, M. Karimi, Microfluid. Nanofluidics 18, 667 (2014), doi: 10.1007/s10404-014-1465-0
  • [16] H. Azizi-toupkanloo, E.K. Goharshadi, P. Nancarrow, Powder Technol. 25, 801 (2014), doi: 10.1016/j.apt.2013.11.015
  • [17] J. Fal, A. Barylyak, K. Besaha, Y.V. Bobitski, M. Cholewa, I. Zawlik, K. Szmuc, J. Cebulski, G. Żyła, Nanoscale Res. Lett. 11, 1 (2016), doi: 10.1186/s11671-016-1590-7

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv132n1p38kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.