Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 1 | 108-111

Article title

Influence of Magnetic Field on Dark States in Transport through Triple Quantum Dots

Content

Title variants

Languages of publication

EN

Abstracts

EN
We theoretically study the electronic transport through a triple quantum dot system in triangular geometry weakly coupled to external metallic leads. By means of the real-time diagrammatic technique, the current and Fano factor are calculated in the lowest order of perturbation theory. The device parameters are tuned to such transport regime, in which coherent population trapping of electrons in quantum dots due to the formation of dark states occurs. The presence of such states greatly influences transport properties leading to a strong current blockade and enhanced, super-Poissonian shot noise. We consider both one- and two-electron dark states and examine the influence of magnetic field on coherent trapping in aforementioned states. When the system is in one-electron dark state, we observe a small shift of the blockade's region, whereas in the case of two-electron dark state, we show that strong magnetic field can lift the current blockade completely.

Keywords

EN

Year

Volume

132

Issue

1

Pages

108-111

Physical description

Dates

published
2017-07

Contributors

  • Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
author
  • Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland

References

  • [1] L.P. Kouwenhoven, D.G. Austing, S. Tarucha, Rep. Prog. Phys. 64, 701 (2001), doi: 10.1088/0034-4885/64/6/201
  • [2] D. Loss, D.P. DiVincenzo, Phys. Rev. A 57, 120 (1998), doi: 10.1103/PhysRevA.57.120
  • [3] C.-Y. Hsieh, Y.-P. Shim, M. Korkusinski, P. Hawrylak, Rep. Prog. Phys. 75, 114501 (2012), doi: 10.1088/0034-4885/64/6/201
  • [4] K. Wrześniewski, I. Weymann, Phys. Rev. B 92, 045407 (2015), doi: 10.1103/PhysRevB.92.045407
  • [5] C. Emary, Phys. Rev. B 76, 245319 (2007), doi: 10.1103/PhysRevB.76.245319
  • [6] C. Poltl, C. Emary, T. Brandes, Phys. Rev. B 80, 115313 (2009), doi: 10.1103/PhysRevB.80.115313
  • [7] I. Weymann, B.R. Bułka, J. Barnaś, Phys. Rev. B 83, 195302 (2011), doi: 10.1103/PhysRevB.83.195302
  • [8] K. Wrześniewski, I. Weymann, Acta Phys. Pol. A 127, 460 (2015), doi: 10.12693/APhysPolA.127.460
  • [9] H. Schoeller, G. Schön, Phys. Rev. B 50, 18436 (1994), doi: 10.1103/PhysRevB.50.18436
  • [9a] J. König, J. Schmid, H. Schoeller, G. Schön, Phys. Rev. B 54, 16820 (1996), doi: 10.1103/PhysRevB.54.16820
  • [10] A. Thielmann, M.H. Hettler, J. König, G. Schön, Phys. Rev. Lett. 95, 146806 (2005), doi: 10.1103/PhysRevLett.95.146806

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv132n1p27kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.