Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 131 | 4 | 732-734

Article title

Study of the Magnetization Processes in Amorphous and Nanocrystalline FINEMET by the Numerical Decomposition of the Hysteresis Loops

Content

Title variants

Languages of publication

EN

Abstracts

EN
The magnetization processes in amorphous and nanocrystalline FINEMET ribbons were studied by the numerical decomposition of the quasi-static hysteresis loop to the contributions of the domain wall movement, the domain rotations, and the domain wall annihilation and nucleation processes following the hyperbolic T(x) model of hysteresis. The hysteresis data measured during decrease of the excitation magnetic field were used for the separation of these processes. The significant differences in behavior of these two materials were found. In amorphous state the domain rotations component dominates whereas in nanocrystalline state the domain wall movement component prevails. These differences are reflected in the anisotropy field distributions as well.

Keywords

EN

Contributors

author
  • Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia
author
  • Department of Physics, Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia
author
  • Wigner Center for Physics, Institute for Solid State Physics and Optics, H-1525 Budapest, P.O. Box 49, Hungary

References

  • [1] F. Preisach, Z. Phys. 94, 277 (1935), doi: 10.1007/BF01349418
  • [2] D. Jiles, D.L.C. Atherton, J. Appl. Phys. 55, 2115 (1984), doi: 10.1063/1.333582
  • [3] J. Takacs, Mathematics of Hysteretic Phenomena, Wiley-VCH, Berlin 2003, doi: 10.1002/3527606521.ch12
  • [4] D. Jiles, in: Introduction to Magnetism and Magnetic Materials, 2nd ed., Chapman & Hall, London 1998
  • [5] A. Ivanyi, Hysteresis Models in Electromagnetic Computation, Akademiai Kiado, Budapest 1997, doi: 10.1023/A:1023026612590
  • [6] L.K. Varga, Gy. Kovacs, J. Takacs, J. Magn. Magn. Mater. 320, L26 (2008), doi: 10.1016/j.jmmm.2007.06.008
  • [7] J. Takacs, Gy. Kovács, L.K. Varga, J. Magn. Magn. Mater. 320, e1016 (2008), doi: 10.1016/j.jmmm.2008.04.178
  • [8] J. Takacs, COMPEL 20, 1002 (2001), doi: 10.1108/EUM0000000005771
  • [9] L.K. Varga, Gy. Kovacs, J. Takacs, J. Magn. Magn. Mater. 320, e814 (2008), doi: 10.1016/j.jmmm.2008.04.135
  • [10] J. Takacs, Gy. Kovacs, L.K. Varga, Physica B 403, 2293 (2008), doi: 10.1016/j.physb.2007.12.008
  • [11] G. Herzer, Phys. Scr. T 49, 307 (1993), doi: 10.1088/0031-8949/1993/T49A/054
  • [12] J.M. Barandiaran, M. Vazquez, A. Hernando, J. Gonzalez, G. Rivero, IEEE Trans. Magn. 25, 3330 (1989), doi: 10.1109/20.42293

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv131n4040kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.