Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 131 | 4 | 681-683

Article title

Effect of Current Annealing on Domain Structure in Amorphous and Nanocrystalline FeCoMoB Microwires

Content

Title variants

Languages of publication

EN

Abstracts

EN
The influence of current annealing on the complex domain structure in amorphous and nanocrystalline FeCoMoB microwire has been studied. The thickness of radial domain structure together with the switching field of single domain wall change as a consequence of variation of complex internal stress distribution inside metallic core. Firstly, radial domain structure thickness monotonously increases with increasing annealing DC current density for amorphous state. Switching field exhibits local minimum in nanocrystalline sample annealed at 500 MA/m^2 for 10 min when the lowest thickness of outer shell (182 nm) was observed. Such annealed sample (which magnetic properties exhibit excellent temperature stability) is suitable candidate for miniaturized sensor construction for sensing the magnetic field or mechanical stress.

Keywords

Contributors

author
  • RVmagnetics a.s., Hodkovce 21, 04421 Košice, Slovakia
author
  • RVmagnetics a.s., Hodkovce 21, 04421 Košice, Slovakia
  • Institute of Physics, Faculty of Sciences, P.J. Safarik University, Park Angelinum 9, 041 54 Košice, Slovakia
author
  • Department of Physics, FEEI, TUKE, Park Komenského 2, 042 00 Košice, Slovakia
author
  • Department of Physics, FEEI, TUKE, Park Komenského 2, 042 00 Košice, Slovakia
  • Institute of Material Science of Madrid, CSIC, 28049 Madrid, Spain
author
  • Institute of Material Science of Madrid, CSIC, 28049 Madrid, Spain

References

  • [1] T.-A. Ovari, N. Lupu, H. Chiriac, in: Magnetic Nano- and Microwires, Ed. M. Vazquez, Elsevier, 2015, p. 199, doi: 10.1016/B978-0-08-100164-6.00007-2
  • [2] D. Praslicka, M. Smelko, P. Lipovsky, V. Kan, N. Flachbart, J. Electr. Eng. 66, 33 (2015)
  • [3] V. Zhukova, in: Novel Functional Magnetic Materials, Ed. A. Zhukov, Springer, Switzerland 2016, p. 221, doi: 10.1007/978-3-319-26106-5_6
  • [4] G. Herzer, Acta Mater. 61, 718 (2013), doi: 10.1016/j.actamat.2012.10.040
  • [5] H. Chiriac, M. Tibu, T.-A. Ovari, IEEE Trans. Magn. 45, 4286 (2009), doi: 10.1109/TMAG.2009.2022743
  • [6] F. Beck, R.C. Gomes, K.D. Sossmeier, F. Bohn, M. Carara, J. Magn. Magn. Mater. 323, 268 (2011), doi: 10.1016/j.jmmm.2010.09.011
  • [7] J. Ziman, B. Zagyi, J. Magn. Magn. Mater. 169, 98 (1997), doi: 10.1016/S0304-8853(96)00712-3
  • [8] C. Garcia, V. Zhukova, J. Gonzalez, J.M. Blanco, A. Zhukov, Physica B 403, 286 (2008), doi: 10.1016/j.physb.2007.08.030
  • [9] K. Pekala, J. Latuch, M. Pekala, I. Skorvanek, P. Jaskiewicz, Nanotechnology 14, 196 (2003), doi: 10.1088/0957-4484/14/2/319
  • [10] S. Michalik, J. Gamcova, J. Bednarcik, R. Varga, J. Alloys Comp. 509, 3409 (2011), doi: 10.1016/j.jallcom.2010.12.098
  • [11] P. Klein, R. Varga, P. Vojtanik, J. Kovac, J. Ziman, G.A. Badini-Confalonieri, M. Vazquez, J. Phys. D Appl. Phys. 43, 045002 (2010), doi: 10.1088/0022-3727/43/4/045002
  • [12] P. Klein, R. Varga, G.A. Badini-Confalonieri, M. Vazquez, J. Magn. Magn. Mater. 323, 3265 (2011), doi: 10.1016/j.jmmm.2011.07.027
  • [13] N.N. Orlova, A.S. Aronin, S.I. Bozhko, Yu.P. Kabanov, V.S. Gornakov, J. Appl. Phys. 111, 073906 (2012), doi: 10.1063/1.3702448
  • [14] A. Stupakiewicz, A. Chizhik, M. Tekielak, A. Zhukov, J. Gonzalez, A. Maziewski, Rev. Sci. Instrum. 85, 103702 (2014), doi: 10.1063/1.4896758

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv131n4023kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.