Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 131 | 2 | 318-323

Article title

Theoretical Predictions of Lattice Parameters and Mechanical Properties of Pentaerythritol Tetranitrate under the Temperature and Pressure by Molecular Dynamics Simulations

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
Molecular dynamics simulations with condensed-phase optimized molecular potentials for atomistic simulation studies force field are performed to investigate the structure, equation of state, and mechanical properties of high energetic material pentaerythritol tetranitrate. The equilibrium structural parameters, pressure-volume relationship and elastic constants at ambient conditions agree excellently with experiments. In addition, fitting the pressure-volume data to the Birch-Murnaghan or Murnaghan equation of state, the bulk modulus B₀ and its first pressure derivative B'₀ are obtained. Moreover, the elastic constants are calculated in the pressure range of 0-10 GPa at room temperature and in the temperature range of 200-400 K at the standard pressure, respectively. By the Voigt-Reuss-Hill approximation, the mechanical properties such as bulk modulus B, shear modulus G, and the Young modulus E are also obtained successfully. The predicted physical properties under temperature and pressure can provide powerful guidelines for the engineering application and further experimental investigations.

Year

Volume

131

Issue

2

Pages

318-323

Physical description

Dates

published
2017-02
received
2016-03-16
(unknown)
2017-01-17

Contributors

author
  • State Key Laboratory Breeding Base of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, China
  • College of Science, East China University of Technology, Nanchang, 330013, China
  • Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang, 621900, China
author
  • College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 400047, China
author
  • College of Science, East China University of Technology, Nanchang, 330013, China
author
  • Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang, 621900, China
author
  • College of Science, East China University of Technology, Nanchang, 330013, China
author
  • Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang, 621900, China

References

  • [1] M.W. Conroy, I.I. Oleynik, S.V. Zybin, C.T. White, Phys. Rev. B 77, 094107 (2008), doi: 10.1103/PhysRevB.77.094107
  • [2] B. Olinger, P.M. Halleck, H.H. Cady, J. Chem. Phys. 62, 4480 (1975), doi: 10.1063/1.430355
  • [3] H.H. Cady, A.C. Larson, Acta Crystallogr. B 31, 1864 (1975), doi: 10.1107/S0567740875006383
  • [4] E.F.C. Byrd, B.M. Rice, J. Phys. Chem. C 111, 2787 (2007), doi: 10.1021/jp0617930
  • [5] D.C. Sorescu, B.M. Rice, D.L. Thompson, 6783, J. Phys. Chem. B 103, (1999), doi: 10.1021/jp991202o
  • [6] H. Sun, J. Phys. Chem. B 102, 7338 (1998), doi: 10.1021/jp980939v
  • [7] J.J. Dick, J. Appl. Phys. 81, 601 (1997), doi: 10.1063/1.364201
  • [8] Y.A. Gruzdkov, Y.M. Gupta, J. Phys. Chem. A 104, 11169 (2000), doi: 10.1021/jp0019613
  • [9] J.M. Winey, Y.M. Gupta, J. Appl. Phys. 90, 1669 (2001), doi: 10.1063/1.1385352
  • [10] B. Sun, J.M. Winey, N. Hemmi, Z.A. Dreger, K.A. Zimmerman, Y.M. Gupta, D.H. Torchinsky, K.A. Nelson, J. Appl. Phys. 104, 073517 (2008), doi: 10.1063/1.2981044
  • [11] A. Zaoui, W. Sekkal, Solid State Commun. 118, 345 (2001), doi: 10.1016/S0038-1098(01)00136-3
  • [12] M. Nieger, J. Lehmann, private communication, 2002
  • [13] Materials Studio http://accelrys.com/products/materials-studio/
  • [14] H.J.C. Berendsen, J.P.M. Postma, W.F.van Gunsteren, A. DiNola, J.R. Haak, J. Chem. Phys. 81, 3684 (1984), doi: 10.1063/1.448118
  • [15] H.C. Andersen, J. Chem. Phys. 72, 2384 (1980), doi: 10.1063/1.439486
  • [16] P.P. Ewald, Ann. Phys. 64, 253 (1921)
  • [17] W.F. Perger, J. Zhao, J.M. Winey, Y. Gupta, Chem. Phys. Lett. 428, 394 (2006), doi: 10.1016/j.cplett.2006.07.046
  • [18] H.V. Brand, J. Phys. Chem. B 109, 13668 (2005), doi: 10.1021/jp051045v
  • [19] F. Birch, Phys. Rev. 71, 809 (1947), doi: 10.1103/PhysRev.71.809
  • [20] F.D. Murnaghan, Am. J. Math. 49, 235 (1937), doi: 10.2307/2371405

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv131n220kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.