Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 130 | 6 | 1295-1323

Article title

Problems Associated with Transferring of Engineering to Small Scale - Towards Theoretical Nanotechnology

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
This paper is seen as a review of attempts carried out by author in order to indicate problems related to transferring of engineering to smaller scales having in mind theoretical aspects. Two main problems are indicated. The first one is associated with question what kind of theory is appropriate for realization of design of devices and processes related to smaller scales including nanoscale. The second problem is related to determination of source of precision which is necessary for realization of the design. Solution of both problems needs elaboration of appropriate theories. One indicates that unified mechanics of materials based on collection of dynamical systems with dimensional reduction is appropriate for future realization of the design process. This is multi-scale description which unifies discrete models related to atomic scale, including molecular dynamics, and more averaged continuum descriptions. In order to determine corresponding source of precision for small scale processes the vacuum medium mechanics is introduced. Within vacuum medium mechanics we are able to determine attractor, expressed on the most fundamental elementary particle level, and responsible for self-organization manifested in molecular processes. Vacuum medium mechanics is considered as fundamental theory. Therefore we should estimate to what degree such a theory is stable with respect to large set of experimental results. In particular one investigates consequences of vacuum medium mechanics for theoretical biology. One accentuates that mechanisms of biological evolution and source of precision for nanotechnology expressed by means of vacuum medium mechanics are interrelated. Theoretical biology and nanotechnology should be described in consistent way in order to cooperate in a future. Both theories: unified mechanics of materials and vacuum medium mechanics are seen as basis for further development of theoretical nanotechnology.

Keywords

Contributors

author
  • Institute of Fluid-Flow Machinery, Polish Academy of Sciences, J. Fiszera 14, 80-231 Gdańsk, Poland

References

  • [1] Handbook of Theoretical and Computational Nanotechnology, Eds. M. Rieth, W. Schommers, Forschungszentrum Karlsruhe, Germany 2006
  • [2] M.W. Hirsch, S. Smale, Differential Equations, Dynamical Systems and Linear Algebra, Academic Press, New York 1974
  • [3] H. Haken, Synergetics, Springer Verlag, Berlin 1977 http://link.springer.com/book/10.1007%2F978-3-642-66784-8
  • [4] J. Kaczmarek, Rep. IMP PAN Gdańsk 514, 1473 (2000)
  • [5] J. Kaczmarek, Interaction and Multiscale Mechanics 3, 1 (2010), doi: 10.12989/imm.2010.3.1.001
  • [6] C. Truesdell, A First Course in Rational Mechanics, Baltimore, Maryland 1972
  • [7] J. Kaczmarek, TASK Quaterly 6, 253 (2002)
  • [8] J. Kaczmarek, Bull. Pol. Acad. Sci. 46, 149 (1998)
  • [9] G.R. Barsch, J.A. Krumhansl, Phys. Rev. Lett. 53, 1069 (1984), doi: 10.1103/PhysRevLett.53.1069
  • [10] G.R. Barsch, J.A. Krumhans, Met. Trans. 19A, 761 (1988)
  • [11] J.K. Liakos, G.A. Saunders, Philos. Mag. A 46, 217 (1982), doi: 10.1080/01418618208239916
  • [12] J. Kaczmarek, Int. J. Eng. Sci. 32, 369 (1994), doi: 10.1016/0020-7225(94)90016-7
  • [13] J. Kaczmarek, Int. J. Eng. Sci. 29, 883 (1991), doi: 10.1016/0020-7225(91)90009-R
  • [14] J. Kaczmarek, Arch. Mech. 45, 135 (1992)
  • [15] J. Kaczmarek, Arch. Mech. 45, 167 (1993)
  • [16] J. Kaczmarek, Arch. Mech. 50, 53 (1998)
  • [17] J. Kaczmarek, Int. J. Plastic. 19, 1585 (2003), doi: 10.1016/S0749-6419(02)00037-2
  • [18] J. Kaczmarek, W. Ostachowicz, Key Eng. Mater. 293-294, 235 (2005), doi: 10.4028/www.scientific.net/KEM.293-294.235
  • [19] J. Kaczmarek, Trans. Inst. Fluid-Flow Machin. 108, 5 (2001)
  • [20] J. Kaczmarek, Acta Mech. 226, 1419 (2015), doi: 10.1007/s00707-014-1261-7
  • [21] A.S. Dawydow, Quantum Mechanics, PWN, Warszawa 1969
  • [22] J.D. Bjorken, S.D. Drell, Relativistic Quantum Fields, McGraw-Hill, New York 1965
  • [23] C. Itzykson, J.-B. Zuber, Quantum Field Theory, McGraw-Hill, Singapore 1985
  • [24] J. Kaczmarek, Phys. Essays 12, 709 (1999), doi: 10.4006/1.3028802
  • [25] J. Kaczmarek, Adv. Stud. Theor. Phys. 2, 393 (2008) http://m-hikari.com/astp/astp2008/astp5-8-2008/kaczmarekASTP5-8-2008.pdf
  • [26] J. Kaczmarek, Adv. Stud. Theor. Phys. 3, 13 (2009) http://m-hikari.com/astp/astp2009/astp1-4-2009/kaczmarekASTP1-4-2009-1.pdf
  • [27] J. Kaczmarek, Adv. Stud. Theor. Phys. 3, 35 (2009) http://m-hikari.com/astp/astp2009/astp1-4-2009/kaczmarekASTP1-4-2009-2.pdf
  • [28] J. Kaczmarek, Adv. Stud. Theor. Phys. 4, 413 (2010) http://m-hikari.com/astp/astp2010/astp9-12-2010/kaczmarekASTP9-12-2010.pdf
  • [29] J. Kaczmarek, Adv. Stud. Theor. Phys. 5, 63 (2011) http://m-hikari.com/astp/astp2011/astp1-4-2011/kaczmarekASTP1-4-2011.pdf
  • [30] J. Kaczmarek, Adv. Stud. Theor. Phys. 6, 1355 (2012) http://m-hikari.com/astp/astp2012/astp25-28-2012/kaczmarekASTP25-28-2012.pdf
  • [31] J. Kaczmarek, Adv. Stud. Theor. Phys. 7, 1165 (2013), doi: 10.12988/astp.2013.426
  • [32] J. Kaczmarek, J. Pure Appl. Math. Adv. Appl. 15, 23 (2016)
  • [33] E. van Beveren, G. Rupp, Material Evidence of a 38 MeV Boson, arXiv: 1202.1739 [hep-ph] http://arXiv.org/abs/{1202.1739
  • [34] Kh.U. Abraamyan, A.B. Anisimov, M.I. Baznat, K.K. Gudima, M.A. Nazarenko, S.G. Reznikov, A.S. Sorin, Observation of the E(38)-Boson, arXiv: 1208.3829v2 [hep-ex] http://arXiv.org/abs/{1208.3829v2
  • [35] J. Kaczmarek, Malays. J. Phys. 36, 1 (2014) http://dev.ifm.org.my/sites/default/files/public%3A//publications/number1.pdf
  • [36] J. Kaczmarek, Far East J. Appl. Math. 75, 101 (2013) http://pphmj.com/abstract/7530.htm
  • [37] C.E. Cleland, C.F. Chyba, Origins Life Evolut. Biosph. 32, 387 (2002), doi: 10.1023/A:1020503324273
  • [38] J.H. van Hateren, Origins Life Evolut. Biosph. 43, 491 (2013), doi: 10.1007/s11084-013-9352-3
  • [39] B. Korzeniewski, J. Theor. Biol. 209, 275 (2001), doi: 10.1006/jtbi.2001.2262
  • [40] J. Kaczmarek, Far East J. Appl. Math. 76, 79 (2013) http://pphmj.com/abstract/7608.htm
  • [41] J. Kaczmarek, Far East J. Appl. Math. 77, 77 (2013) http://pphmj.com/abstract/7632.htm
  • [42] J. Kaczmarek, Computat. Meth. Sci. Technol. 8, 31 (2002), doi: 10.12921/cmst.2002.08.01.31-62
  • [43] P.G. Mezey, Potential Energy Hypersurface, Elsevier, Amsterdam 1987
  • [44] P.G. Mezey, Theor. Chim. Acta (Berlin) 58, 309 (1981), doi: 10.1007/BF02426907

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv130n606kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.