Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 130 | 2 | 607-608

Article title

Jack Polynomials and Fractional Quantum Hall Effect at ν = 1/3

Content

Title variants

Languages of publication

EN

Abstracts

EN
We investigate properties of strongly correlated, spinless electrons confined within given Landau level at filling factor ν = 1/3. Our analysis is based on the formalism of the Jack polynomials. Selected Jack polynomial wave functions are compared with ground states of the Coulomb interaction Hamiltonians, in different materials and the Landau levels, obtained by exact diagonalization. We show that certain Jack wave functions can be used as a description of fractional quantum Hall states.

Keywords

EN

Contributors

author
  • Department of Theoretical Physics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
author
  • Department of Theoretical Physics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

References

  • [1] I.G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford University Press, New York 1995
  • [2] I.G. Macdonald, A New Class Of Symmetric Functions, Publ. I.R.M.A. Strasbourg, 372/S20, Actes 20 Séminaire Lotharingien, 1988, p. 131
  • [3] S. Kerov, Asymptotic Representation Theory of the Symmetric Group and Its Applications in Analysis, American Mathematical Society, USA 2003
  • [4] R.P. Stanley, Adv. Math. 77, 76 (1988), doi: 10.1016/0001-8708(89)90015-7
  • [5] F.K. Sogo, J. Math. Phys. 35, 22822296 (1994), doi: 10.1063/1.530552
  • [6] A. Hora, N. Obata, Quantum Probability and Spectral Analysis of Graphs, Springer-Verlag, Berlin 2007, doi: 10.1007/3-540-48863-4
  • [7] B.A. Bernevig, F.D.M. Haldane, Phys. Rev. B 77, 184502 (2008), doi: 10.1103/PhysRevB.77.184502
  • [8] B.A. Bernevig, F.D.M. Haldane, Phys. Rev. Lett. 100, 246802 (2008), doi: 10.1103/PhysRevLett.100.246802
  • [9] B.A. Bernevig, F.D.M. Haldane, Phys. Rev. Lett. 102, 066802 (2009), doi: 10.1103/PhysRevLett.102.066802
  • [10] A. Bernevig, N. Regnault, Phys. Rev. Lett. 103, 206801 (2009), doi: 10.1103/PhysRevLett.103.206801
  • [11] R. Thomale, B. Estienne, N. Regnault, A. Bernevig, Phys. Rev. B 84, 045127 (2011), doi: 10.1103/PhysRevB.84.045127
  • [12] W. Baratta, P.J. Forrester, Nucl. Phys. B 843, 362 (2011), doi: 10.1016/j.nuclphysb.2010.09.018
  • [13] B. Kuśmierz, Y.-H. Wu, A. Wójs, Acta Phys. Pol. A 126, 1134 (2014), doi: 10.12693/APhysPolA.126.1134
  • [14] B. Kuśmierz, Y.-H. Wu, A. Wójs, Acta Phys. Pol. A 129, A-73 (2016), doi: 10.12693/APhysPolA.129.A-73
  • [15] K.H. Lee, Z.-X. Hu, X. Wan, Phys. Rev. B 89, 165124 (2014), doi: 10.1103/PhysRevB.89.165124
  • [16] L. Lapointe, A. Lascoux, J. Morse, Electr. J. Combin. 7, N1 (2000)
  • [17] R. Laughlin, Phys. Rev. Lett. 50, 1395 (1983), doi: 10.1103/PhysRevLett.50.1395
  • [18] D.C. Tsui, H.L. Störmer, A.C. Gossard, Phys. Rev. Lett. 48, 1559 (1982), doi: 10.1103/PhysRevLett.48.1559
  • [19] G. Moore, N. Read, Nucl. Phys. B 360, 362 (1991), doi: 10.1016/0550-3213(91)90407-O
  • [20] N. Read, E. Rezayi, Phys. Rev. B 59, 8084 (1999), doi: 10.1103/PhysRevB.59.8084
  • [21] M.V. Milovanovic, Th. Jolicoeur, I. Vidanovic, Phys. Rev. B 80, 155324 (2009), doi: 10.1103/PhysRevB.80.155324

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv130n223kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.