Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 129 | 6 | 1187-1190

Article title

Luminescence Tuning of MEH-PPV for Organic Electronic Applications

Content

Title variants

Languages of publication

EN

Abstracts

EN
In this report, a doped semiconducting ink consisting of a blended poly [2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) with aluminium-tris (8-hydroxychinolin) (Alq₃) and diluted in toluene is formulated. The intentional doping with the electron transport nanoparticle Alq₃ results in an additional band gap state of the hole transport MEH-PPV polymer and reduction of the switch on voltage of the organic LED display. Doping is probed at room temperature with photoluminescence spectroscopy. Photoluminescence results revealed that as the Alq₃ content increases in blends, characteristic peaks of intensities of MEH-PPV are broadened and reduced. In addition, the emission for Alq₃ concentrations between 30% and 60% are featured by a band at 565 nm (2.19 eV) for the lower concentration and consistently blue shifted to 530 nm (2.33 eV) for the higher concentration. This new band at 565 nm (2.19 eV) neither belongs to pure MEH-PPV nor to Alq₃ and evidences charge transfer from the lowest unoccupied molecular orbital of the Alq₃ to the highest occupied molecular orbital of the MEH-PPV.

Keywords

EN

Year

Volume

129

Issue

6

Pages

1187-1190

Physical description

Dates

published
2016-06
received
2015-11-07

Contributors

  • Departamento de Física, Grupo de Docencia e Investigación en Física, Universidad Militar Nueva Granada, Carrera 11 No. 101-80; Carrera 30 No. 45-03, Bogotá, Colombia
author
  • Grupo de Investigación REM-Research in Energy and Materials, Universidad Antonio Nariño, Bogotá, Colombia

References

  • [1] G. Salvan, B.A. Paez, D.R.T. Zahn, L. Gisslen, R. Scholz, in: Physical and Chemical Aspects of Organic Electronics: From Fundamentals to Functioning Devices: Structural and Electronic Properties of OFETs, Ed. C. Wöll, Wiley-VCH, Weinheim 2009, Ch. 13
  • [2] H. Klauk, Organic Electronics II: More Materials and Applications, Wiley-VCH, Weinheim 2012, doi: 10.1002/9783527640218
  • [3] J. Roncali, P. Leriche, P. Blanchard, Adv. Mater. 26, 3821 (2014), doi: 10.1002/adma.201305999
  • [4] S. Xue, X. Qiu, L. Yao, L. Wang, M. Yao, C. Gu, Y. Wang, Z. Xie, H. Wu, Org. Electron. 27, 35 (2015), doi: 10.1016/j.orgel.2015.08.026
  • [5] O. Pabst, J. Perelaer, E. Beckert, U.S. Schubert, R. Eberhardt, A. Tünnermann, Org. Electron. 14, 3423 (2013), doi: 10.1016/j.orgel.2013.09.009
  • [6] H. Shirakawa, E.J. Louis, A.G. Macdiarmid, C.K. Chiang, A.J. Heeger, J. Chem. Soc. Chem. Commun. 1977, 578 (1977), doi: 10.1039/C39770000578
  • [7] Y. Yamamoto, K. Yoshino, Y. Inuishi, J. Phys. Soc. Jpn. 47, 1887 (1979), doi: 10.1143/JPSJ.47.1887
  • [8] A.V. Tunc, A. De Sio, D. Riedel, F. Deschler, E. Da Como, J. Parisi, E. von Hauff, Org. Electron. 13, 290 (2012), doi: 10.1016/j.orgel.2011.11.014
  • [9] K.H. Yim, G.L. Whiting, C.E. Murphy, J.J.M. Halls, J.H. Burroughes, R.H. Friend, J.S. Kim, Adv. Mater. 20, 3319 (2008), doi: 10.1002/adma.200800735
  • [10] H. Méndez, G. Heimel, A. Opitz, K. Sauer, P. Barkowski, M. Oehzelt, J. Soeda, T. Okamoto, J. Takeya, J.-B. Arlin, J.-Y. Balandier, Y. Geerts, N. Koch, I. Salzmann, Angew. Chem. 125, 1 (2013), doi: 10.1002/anie.201302396
  • [11] K.S. Yook, J.Y. Lee, Adv. Mater. 26, 4218 (2014), doi: 10.1002/adma.201306266
  • [12] W. Bruetting, Ch. Adachi, Physics of Organic Semiconductors, Wiley-VCH, Weinheim 2013, doi: 10.1002/9783527654949
  • [13] J. Carlé, F. Krebs, Sol. En. Mater. Sol. Cells 119, 309 (2013), doi: 10.1016/j.solmat.2013.08.044
  • [14] B. Lüssem, M. Riede, K. Leo, Phys. Status Solidi A 210, 9 (2013), doi: 10.1002/pssa.201228310
  • [15] K. Hong, S.Y. Kim, W.-K. Kim, J.-L. Lee, Electrochem. Solid-State Lett. 10, H85 (2007), doi: 10.1149/1.2424268
  • [16] C.K. Chan, F. Amy, Q. Zhang, S. Barlow, S. Marder, A. Kahn, Chem. Phys. Lett. 431, 67 (2006), doi: 10.1016/j.cplett.2006.09.034
  • [17] H.Y. Kang, C.H. Lee, J. Korean Phys. Soc. 45, 756 (2004)
  • [18] Z. Ahmad, M.H. Suhail, I.I. Muhammad, W.K. Al-Rawi, K. Sulaiman, Q. Zafar, A.S. Hamzah, Z. Shaameri, Chin. Phys. B 22, 100701 (2013), doi: 10.1088/1674-1056/22/10/100701
  • [19] F. Yakuphanoglu, W.A. Farooq, Acta Phys. Pol. A 119, 890 (2011), doi: 10.12693/APhysPolA.119.890
  • [20] B.A. Paez-Sierra, D. Marulanda, H. Rodríguez, Proc. SPIE 9185, 918521 (2014), doi: 10.1117/12.2062367
  • [21] D. Krautz, E. Lunede, J. Puigdollers, G. Badenes, R. Alcubilla, S. Cheylan, Appl. Phys. Lett. 96, 033301 (2010), doi: 10.1063/1.3276271
  • [22] A. Kumar, P.K. Bhatnagar, P.C. Mathur, K. Tada, M. Onoda, J. Mater. Sci. 40, 3849 (2005), doi: 10.1007/s10853-005-2556-9
  • [23] L. Xiao-Dong, X. Zheng, Z. Fu-Jun, Z. Su-Ling, Z. Tian-Hui, G. Wei, S. Jing-Lu, K. Chao, Y. Guang, X. Xu-Rong, Chin. Phys. B 19, 118601 (2010)
  • [24] H. Méndez-Pinzón, D. Pardo-Pardo, J. Cuéllar-Alvarado, J. Salcedo-Reyes, R. Vera, B.A. Páez-Sierra, Univ. Scient. 15, 68 (2010), doi: 10.11144/javeriana.SC15-1.aotc
  • [25] Z. Xu, H. Zang, B. Hu, Mater. Coat. 60, 49 (2008)
  • [27] K.-H. Choi, D.-H. Hwang, H.-M. Lee, L.-M. Do, S.-D. Jung, T. Zyung, Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A Mol. Cryst. Liq. Cryst. 316, 269 (1998), doi: 10.1080/10587259808044506
  • [28] J.R.H. Shaw-Stewart, T. Mattle, T.K. Lippert, M. Nagel, F.A. Nuesch, A. Wokaun, J. Appl. Phys. 113, 043104 (2013), doi: 10.1063/1.4788710

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv129n621kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.