Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 129 | 6 | 1079-1082

Article title

Second Law Analysis on an Air-Standard Miller Engine

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
Performance analysis has been carried out for air-standard Miller engine using second law analysis. The relations of the second law efficiency versus compression ratio, the second law efficiency versus first law efficiency as well as the exergy versus compression ratio are obtained. The results show that the curve of second law efficiency versus first law efficiency is a parabolic-like one. The results also show that, throughout the compression ratio range, the second law efficiency increases when the expansion-compression ratio increases.

Keywords

EN

Contributors

author
  • Department of Mechanical Engineering of Biosystem, Shahrekord University, P.O. Box 115, Shahrekord, Iran

References

  • [1] R.H. Miller, ASME Trans. 69, 453 (1947)
  • [2] R. Ebrahimi, Acta Phys. Pol. A 118, 534 (2010), doi: 10.12693/APhysPolA.118.534
  • [3] R. Ebrahimi, Acta Phys. Pol. A 120, 384 (2011), doi: 10.12693/APhysPolA.120.384
  • [4] A. Al-Sarkhi, I. Al-Hinti, E. Abu-Nada, B. Akash, Int. Commun. Heat Mass 3, 897 (2007), doi: 10.1016/j.icheatmasstransfer.2007.03.012
  • [5] R. Ebrahimi, Acta Phys. Pol. A 124, 6 (2013), doi: 10.12693/APhysPolA.124.6
  • [6] R. Ebrahimi, Acta Phys. Pol. A 122, 645 (2012), doi: 10.12693/APhysPolA.122.645
  • [7] A. Al-Sarkhi, J.O. Jaber, S.D. Probert, Appl. En. 83, 343 (2006), doi: 10.1016/j.apenergy.2005.04.003
  • [8] L. Chen, W. Zhang, F. Sun, Appl. En. 84, 512 (2007), doi: 10.1016/j.apenergy.2006.09.004
  • [9] Y. Zhao, J. Chen, Appl. Therm. Eng. 27, 2051 (2007), doi: 10.1016/j.applthermaleng.2006.12.002
  • [10] J.C. Lin, S.S. Hou, Int. J. Therm. Sci. 47, 182 (2008), doi: 10.1016/j.ijthermalsci.2007.02.002
  • [11] R. Ebrahimi, Comput. Math. Appl. 62, 2169 (2011), doi: 10.1016/j.camwa.2011.07.002
  • [12] R. Ebrahimi, Appl. Math. Mod. 36, 4073 (2012), doi: 10.1016/j.apm.2011.11.031
  • [13] G. Gonca, B. Sahin, Y. Ust, Energy 54, 285 (2013), doi: 10.1016/j.energy.2013.02.004
  • [14] J. Lin, Z. Xu, S. Chang, H. Yan, Int. Commun. Heat Mass 54, 54 (2014), doi: 10.1016/j.icheatmasstransfer.2014.03.012
  • [15] I. Sezer, A. Bilgin, Fuel 112, 523 (2013), doi: 10.1016/j.fuel.2012.09.078
  • [16] J.B. Heywood, Internal Combustion Engine Fundamentals, McGraw Hill, New York 1988
  • [17] G.R. Fatehi, Sh. Khalilarya, R. Ebrahimi, Therm. Sci. 17, 107 (2013), doi: 10.2298/TSCI120105217F
  • [18] H. Ozcan, Heat Mass Transf. 47, 571 (2011), doi: 10.1007/s00231-010-0749-5
  • [19] R. Ebrahimi, Sci. Iran. 18, 1231 (2011), doi: 10.1016/j.scient.2011.11.002
  • [20] R. Ebrahimi, M. Mercier, IJE Trans. B Appl. 24, 65 (2011)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv129n601kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.