Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 129 | 5 | 1023-1031

Article title

Interplay between Endogenous and Exogenous Fluctuations in Financial Markets

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
We address microscopic, agent based, and macroscopic, stochastic, modeling of the financial markets combining it with the exogenous noise. The interplay between the endogenous dynamics of agents and the exogenous noise is the primary mechanism responsible for the observed long-range dependence and statistical properties of high volatility return intervals. By exogenous noise we mean information flow or/and order flow fluctuations. Numerical results based on the proposed model reveal that the exogenous fluctuations have to be considered as indispensable part of comprehensive modeling of the financial markets.

Keywords

Contributors

author
  • Institute of Theoretical Physics and Astronomy, Vilnius University, Vilnius, LT 01108, Lithuania

References

  • [1] M. Karsai, K. Kaski, A.L. Barabasi, J. Kertesz, NIH Sci. Rep. 2, 397 (2012), doi: 10.1038/srep00397
  • [2] A. Chakraborti, I.M. Toke, M. Patriarca, F. Abergel, Quantitat. Fin. 7, 991 (2011), doi: 10.1080/14697688.2010.539248
  • [3] X. Gabaix, Ann. Rev. Econ. 1, 255 (2009), doi: 10.1146/annurev.economics.050708.142940
  • [4] J.D. Farmer, M. Gallegati, C. Hommes, A. Kirman, P. Ormerod, S. Cincotti, A. Sanchez, D. Helbing, Europ. Phys. J. Spec. Top. 214, 295 (2012), doi: 10.1140/epjst/e2012-01696-9
  • [5] R.J. Shiller, Am. Econ. Rev. 104, 1486 (2014), doi: 10.1257/aer.104.6.1486
  • [6] A. Kirman, Macroecon. Dynam. 20, 2 (2016), doi: 10.1017/S1365100514000339
  • [7] R.N. Mantegna, H.E. Stanley, Introduction to Econophysics: Correlations and Complexity in Finance, Cambridge University Press, New York 1999, doi: 10.1017/CBO9780511755767
  • [8] J.P. Bouchaud, M. Potters, Theory of Financial Risks and Derivative Pricing, Cambridge University Press, New York 2003, doi: 10.1017/CBO9780511753893
  • [9] D. Sornette, Why Stock Markets Crash: Critical Events in Complex Financial Systems, Princeton University Press, Boston 2009, doi: 10.1515/9781400829552
  • [10] F. Slanina, Essentials of Econophysics Modelling, Oxford University Press, Oxford 2013, doi: 10.1093/acprof:oso/9780199299683.001.0001
  • [11] L. Giraitis, R. Leipus, D. Surgailis, in: Long Memory in Economics, Eds. G. Teyssiere, A. Kirman, Springer Berlin Heidelberg, 2007, p. 3, doi: 10.1007/978-3-540-34625-8_1
  • [12] L. Giraitis, R. Leipus, D. Surgailis, in: Handbook of Financial Time Series, Eds. T.G. Anderson, R.A. Davis, J. Kreis, T. Mikosh, Springer Verlag, Berlin 2009, p. 71, doi: 10.1007/978-3-540-71297-8_3
  • [13] C. Conrad, J. Econom. 157, 441 (2010), doi: 10.1016/j.jeconom.2010.03.045
  • [14] M.E.H. Arouri, S. Hammoudeh, A. Lahiani, D.K. Nguyen, The Quarterly Review of Economics and Finance 52, 207 (2012), doi: 10.1016/j.qref.2012.04.004
  • [15] L. Giraitis, H.L. Koul, D. Surgailis, Large Sample Inference for Long Memory Processes, World Sci., London : Imperial College Press 2012, doi: 10.1142/p591
  • [16] M. Tayefi, T.V. Ramanathan, Austr. J. Statist. 41, 175 (2012), doi: 10.17713/ajs.v41i3.172
  • [17] A.W. Lo, Econometrica 59, 1279 (1991), doi: 10.2307/2938368
  • [18] W. Willinger, M.S. Taqqu, V. Teverovsky, Finance Stochast. 3, 1 (1999), doi: 10.1007/s007800050049
  • [19] T. Mikosch, C. Starica, in: Theory and Applications of Long-Range Dependence, Birkhauser, Boston 2003
  • [20] V. Gontis, A. Kononovicius, PLoS ONE 9, e102201 (2014), doi: 10.1371/journal.pone.0102201
  • [21] K. Yamasaki, L. Muchnik, S. Havlin, A. Bunde, H. Stanley, Proc. Natl. Acad. Sci. USA 102, 9424 (2005), doi: 10.1073/pnas.0502613102
  • [22] F. Wang, K. Yamasaki, S. Havlin, H. Stanley, Phys. Rev. E 77, 026117 (2006), doi: 10.1103/PhysRevE.73.026117
  • [23] F. Wang, K. Yamasaki, S. Havlin, H. Stanley, Phys. Rev. E 77, 016109 (2008), doi: 10.1103/PhysRevE.77.016109
  • [24] J. Ludescher, C. Tsallis, A. Bunde, EuroPhys. Lett. 95, 68002 (2011), doi: 10.1209/0295-5075/95/68002
  • [25] J. Ludescher, A. Bunde, Phys. Rev. E 90, 062809 (2014), doi: 10.1103/PhysRevE.90.062809
  • [26] V. Gontis, S. Havlin, A. Kononovicius, B. Podobnik, H.E. Stanley, arXiv: 1507.05203 (2015) http://arXiv.org/abs/1507.05203
  • [27] R. Shiller, Irrational Exuberance, Princeton University Press, Princeton 2015, doi: 10.1515/9781400865536
  • [28] J.A. Scheinkman, Speculation, Trading, and Bubbles, Columbia University Press, New York 2014, doi: 10.2139/ssrn.2227701
  • [29] A.P. Kirman, Quart. J. Econ. 108, 137 (1993), doi: 10.2307/2118498
  • [30] R.T. Baillie, J. Econom. 73, 5 (1996), doi: 10.1016/0304-4076(95)01732-1
  • [31] J. Ruseckas, B. Kaulakys, Phys. Rev. E 84, 051125 (2011), doi: 10.1103/PhysRevE.84.051125
  • [32] J. Ruseckas, B. Kaulakys, J. Statist. Mech. 2014, P06004 (2014), doi: 10.1088/1742-5468/2014/06/P06005
  • [33] A.N. Borodin, P. Salminen, Handbook of Brownian Motion, Birkhauser, Basel 2002, doi: 10.1007/978-3-0348-8163-0
  • [34] M. Jeanblanc, M. Yor, M. Chesney, Mathematical Methods for Financial Markets, Springer, Berlin 2009, doi: 10.1007/978-1-84628-737-4
  • [35] C.W. Gardiner, Handbook of Stochastic Methods, Springer, Berlin 2009, doi: 10.1007/978-3-662-05389-8
  • [36] S. Redner, A Guide to First-Passage Processes, Cambridge University Press 2001, doi: 10.1017/CBO9780511606014
  • [37] V. Gontis, A. Kononovicius, S. Reimann, Adv. Complex Syst. 15, 1250071 (2012), doi: 10.1142/S0219525912500713
  • [38] B. Kaulakys, M. Alaburda, V. Gontis, AIP Conf. Proc. 1129, 13 (2009), doi: 10.1063/1.3140414
  • [39] B. Kaulakys, M. Alaburda, J. Statist. Mech. 2009, P02051 (2009), doi: 10.1088/1742-5468/2009/02/P02051
  • [40] A. Kirman, G. Teyssiere, Stud. Nonlin. Dyn. Econom. 5, 280 (2001), doi: 10.1162/10811820160130260
  • [41] M.S. Pakkanen, Math. Financ. Econ. 3, 89 (2010), doi: 10.1007/s11579-010-0029-7
  • [42] A. Chakraborti, I.M. Toke, M. Patriarca, F. Abergel, Quantitat. Fin. 7, 1013 (2011), doi: 10.1080/14697688.2010.539249
  • [43] S.H. Chen, S.P. Li, Int. Rev. Financ. Anal. 23, 1 (2012), doi: 10.1016/j.irfa.2011.07.001
  • [44] L. Feng, B. Li, B. Podobnik, T. Preis, H.E. Stanley, Proc. Natl. Acad. Sci. USA 22, 8388 (2012), doi: 10.1073/pnas.1205013109
  • [45] S.M. Krause, P. Bottcher, S. Bornholdt, Phys. Rev. E 85, 031126 (2012), doi: 10.1103/PhysRevE.85.031126
  • [46] R. Frederick, Proc. Natl. Acad. Sci. USA 110, 3703 (2013), doi: 10.1073/pnas.1302005110
  • [47] M. Ortisi, V. Zuccolo, Appl. Math. Fin. 20, 578 (2013), doi: 10.1080/1350486X.2013.787246
  • [48] Econophysics of Agent-Based Models, Eds. F. Abergel, H. Aoyama, B.K. Chakrabari, Springer, Springer International Publishing 2014, doi: 10.1007/978-3-319-00023-7
  • [49] S. Alfarano, T. Lux, F. Wagner, Comput. Econ. 26, 19 (2005), doi: 10.1007/s10614-005-6415-1
  • [50] A. Kononovicius, V. Gontis, Physica A 391, 1309 (2012), doi: 10.1016/j.physa.2011.08.061
  • [51] T. Lux, M. Marchesi, Nature 397, 498 (1999), doi: 10.1038/17290
  • [52] E. Samanidou, E. Zschischang, D. Stauffer, T. Lux, Rep. Progr. Phys. 70, 409 (2007), doi: 10.1088/0034-4885/70/3/R03
  • [53] S. Cincotti, L. Gardini, T. Lux, Comput. Econ. 32, 1 (2008), doi: 10.1007/s10614-008-9126-6
  • [54] A. Kononovicius, V. Gontis, EuroPhys. Lett. 101, 28001 (2013), doi: 10.1209/0295-5075/101/28001
  • [55] X. Gabaix, P. Gopikrishnan, V. Plerou, H.E. Stanley, Nature 423, 267 (2003), doi: 10.1038/nature01624
  • [56] J.D. Farmer, L. Gillemot, F. Lillo, S. Mike, A. Sen, Quantitat. Fin. 4, 383 (2004), doi: 10.1080/14697680400008627
  • [57] X. Gabaix, P. Gopikrishnan, V. Plerou, H.E. Stanley, Quarterly J. Econ. 121, 461 (2006), doi: 10.1162/qjec.2006.121.2.461
  • [58] R. Rak, S. Drozdz, J. Kwapien, P. Oswiecimka, Acta Phys. Pol. B 44, 2035 (2013), doi: 10.5506/APhysPolB.44.2035
  • [59] B. Kaulakys, V. Gontis, M. Alaburda, Phys. Rev. E 71, 1 (2005), doi: 10.1103/PhysRevE.71.051105
  • [60] J. Ruseckas, B. Kaulakys, J. Statist. Mech. 2014, P06004 (2014), doi: 10.1088/1742-5468/2014/06/P06005
  • [61] V. Gontis, B. Kaulakys, J. Statist. Mech. 2006, P10016 (2006), doi: 10.1088/1742-5468/2006/10/P10016
  • [62] V. Gontis, B. Kaulakys, Physica A 382, 114 (2007), doi: 10.1016/j.physa.2007.02.012
  • [63] V. Gontis, B. Kaulakys, J. Ruseckas, Physica A 387, 3891 (2008), doi: 10.1016/j.physa.2008.02.078
  • [64] V. Gontis, J. Ruseckas, A. Kononovicius, Physica A 389, 100 (2010), doi: 10.1016/j.physa.2009.09.011
  • [65] Y. Yura, H. Takayasu, D. Sornette, M. Takayasu, Phys. Rev. E 92, 042811 (2015), doi: 10.1103/PhysRevE.92.042811
  • [66] A. Kononovicius, J. Ruseckas, Physica A 427, 74 (2015), doi: 10.1016/j.physa.2015.02.040
  • [67] R. Engle, T. Bollerslev, Econ. Rev. 5, 1 (1986), doi: 10.1080/07474938608800095
  • [68] M.L. Higgins, A.K. Bera, Int. Econ. Rev. 33, 137 (1992), doi: 10.2307/2526988
  • [69] V. Filimonov, D. Sornette, Quantitat. Fin. 15, 1 (2015), doi: 10.1080/14697688.2015.1032544
  • [70] M. Denys, M. Jagielski, T. Gubiec, R. Kutner, H.E. Stanley, Universality of Market Superstatistics, arXiv: 1509.06315 (2015) http://arXiv.org/abs/1509.06315

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv129n524kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.