Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 129 | 5 | 993-996

Article title

Predicting Gross Domestic Product Components through Tsallis Entropy Econometrics

Content

Title variants

Languages of publication

EN

Abstracts

EN
This article proposes the Tsallis non-extensive entropy econometric approach to forecast components of the country gross domestic product based on the knowledge of time series macroeconomic aggregates of the past period, plus some sparse and imperfect information of the current period. Non-extensive entropy technique has proved to remain a good modelling device not only in the case of high frequency series, but also in the case of aggregated series. To predict the missing GDP components, we set up a q-generalized Kullback-Leibler information divergence criterion function with a priori consistency, GDP related macroeconomic constraints and regular conditions. The model forecasts are compared to the official Polish GDP components of the corresponding period. The proposed Tsallis entropy approach leads to high predictive performance and shows a stronger estimation stability through different model simulations than the traditional Shannon model. Furthermore, as expected this Tsallis related approach seems to reflect a higher stability through parameter computation and simulation in comparison with the traditional Shannon-Gibbs entropy technique.

Keywords

EN

Contributors

author
  • University of Information Technology and Management (WSIZ), Rzeszów, Poland
  • Statistics Office in Rzeszów, University of Rzeszów, Poland
author
  • University of Information Technology and Management (WSIZ), Rzeszów, Poland

References

  • [1] J. Tinbergen, Econometrica 1, 247 (1933), doi: 10.2307/1907039
  • [2] L.R. Klein, An Essay on the Theory of Economic Prediction, Markham, Chicago 1970
  • [3] L. Walras, Éléments d'économie politique pure, ou, Théorie de la richesse sociale, Elements of Pure Political Economy, or, Theory of Social Wealth, L. Corbaz & Cie, Lausanne 1874 (in French)
  • [4] B.J. Mandelbrot, Business 36, 394 (1963)
  • [5] J. Kwapień, S. Drożdż, Phys. Rep. 515, 115 (2012), doi: 10.1016/j.physrep.2012.01.007
  • [6] A. Dragulescu, V.M. Yakovenko, Physica A 299, 213 (2001), doi: 10.1016/S0378-4371(01)00298-9
  • [7] V.M. Yakovenko, J.B. Rosser, Rev. Mod. Phys. 81, 1703 (2009), doi: 10.1103/RevModPhys.81.1703
  • [8] M. Jagielski, R. Duczmal, R. Kutner, Acta Phys. Pol. A 127, A-75 (2015), doi: 10.12693/APhysPolA.127.A-75
  • [9] T. Lux, Appl. Fin. Econ. 6, 463 (1996)
  • [10] R. Rak, S. Drożdż, J. Kwapień, Physica A 374, 315 (2007), doi: 10.1016/j.physa.2006.07.035
  • [11] R.N. Mantegna, H.E. Stanley, An Introduction to Econophysics: Correlations and Complexity in Finance, Cambridge University Press, Cambridge, UK 2000, doi: 10.1017/CBO9780511755767
  • [12] S. Bwanakare, Acta Phys. Pol. A 127, A-13 (2015), doi: 10.12693/APhysPolA.127.A-13
  • [13] A.N. Tikhonov, V.I. Arsenin, Solutions of Ill-Conditioned Problems, Wiley, New York 1977
  • [14] A. Golan, J.M. Perloff, J. Econom. 107, 195 (2002), doi: 10.1016/S0304-4076(01)00120-8
  • [15] E.T. Jaynes, Probability Theory: The Logic of Science, Washington University, Washington 1994, doi: 10.1017/CBO9780511790423
  • [16] S. Bwanakare, Entropy 16, 2713 (2014), doi: 10.3390/e16052713
  • [17] R.C. Venkatesan, A. Plastino, Phys. Lett. A 376, 3470 (2011), doi: 10.1016/j.physleta.2011.09.021
  • [18] C. Tsallis, R.S. Mendes, A.R. Plastino, Physica A 261, 534 (1998), doi: 10.1016/S0378-4371(98)00437-3
  • [19] S. Abe, G.B. Bagci, arXiv: cond-mat/0404253, April 2004 http://arXiv.org/abs/cond-mat/0404253, April
  • [20] A. Golan, G. Judge, D. Miller, Maximum Entropy Econometrics: Robust Estimation with Limited Data, Wiley, Chichester (England) 1996
  • [21] C. Tsallis, Introduction to Non-Extensive Statistical Mechanics: Approaching a Complex World, Springer, Berlin 2009
  • [22] GUS, Verified estimation of GNP for zears 2010-2014, (in Polish) http://stat.gov.pl/download/gfx/portalinformacyjny/pl/defaultaktualnosci/5481/9/1/1/zweryfikowany_szacunek_pkb_i_dnb_16_10_2015.pdf
  • [23] A. Maravall, Computat. Stat. Data Anal. 50, 2167 (2006), doi: 10.1016/j.csda.2005.07.006

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv129n518kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.