Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 129 | 4 | 531-534

Article title

Size Dependent Properties of Hollow Gold Nanoparticles: A Theoretical Investigation

Content

Title variants

Languages of publication

EN

Abstracts

EN
A new kind of nanostructures with the negative curvature defined as the hollow ones have recently used in biomedical applications. In this work, an analytic model was developed to compute the size-dependent properties of spherical hollow gold nanoparticles in shell-core-shell configuration. This model has established to calculate the cohesive energies based on the surface energy consideration depending on sizes of inner and outer surfaces of hollow nanoparticles. The size and geometry of the model particles have been obtained by using the stability diagram and the collapsing mechanism was studied by molecular dynamics simulations. The model has been also applied to the hollow particles within unstable and half stable geometry. The predicted results have been compared with each other and those obtained by solid ones. The theoretically predicted size dependent properties are consistent with experimental observations and the hollow quantum dot calculations. Thus, an atomistic insight into the size effect on the cohesive energies of hollow nanoparticles has been presented.

Keywords

EN

Contributors

  • Trakya University, Faculty of Science, Department of Physics, Balkan Campus 22030 Edirne, Turkey

References

  • [1] E. Lim, T. Kim, S. Paik, S. Haam, Y. Huh, K. Lee, Chem. Rev. 115, 327 (2015), doi: 10.1021/cr300213b
  • [2] S. Adams, D. Thai, X. Mascona, A.M. Schwartzberg, J.Z. Zhang, Chem. Mater. 26, 6805 (2014), doi: 10.1021/cm503392
  • [3] H. Liang, L. Wan, C. Bai, L. Jiang, J. Phys. Chem. B 109, 7795 (2005), doi: 10.1021/jp045006f
  • [4] A.M. Schwartzberg, T.Y. Olson, C.E. Talley, J.Z. Zhang, J. Phys. Chem. B 110, 19935 (2006), doi: 10.1021/jp062136a
  • [5] X. Bai, M. Li, Nano Lett. 6, 2284 (2006), doi: 10.1021/nl0617282
  • [6] L. Jiang, X. Yin, J. Zhao, Chin. J. Inorg. Chem. 25, 176 (2009)
  • [7] L. Jiang, X. Yin, J. Zhao, H. Liu, Y. Liu, F. Wang, J. Zhu, F. Boey, H. Zhang, J. Phys. Chem. C 113, 20193 (2009), doi: 10.1021/jp905280g
  • [8] F. Delogu, J. Phys. Chem. A 112, 2863 (2008), doi: 10.1021/jp077713p
  • [9] S. Senturk Dalgic, U. Domekeli, J. Optoelectron. Adv. Mater. 11, 2126 (2009)
  • [10] S. Senturk Dalgic, J. Optoelectron. Adv. Mater. 11, 2133 (2009)
  • [11] R. Huang, G. Shao, X. Zeng, Y. Wen, Sci. Rep. 4, 7051 (2014), doi: 10.1038/srep07051
  • [12] U.S. Schwarz, S.A. Safran, Phys. Rev. E 62, 6957 (2000), doi: 10.1103/PhysRevE.62.6957
  • [13] C.Q. Sun, Progr. Solid State Chem. 35, 1 (2007), doi: 10.1016/j.progsolidschem.2006.03.001
  • [14] G. Ouyang, G.W. Yang, Appl. Mater. Interf. 4, 210 (2012), doi: 10.1021/am201270r
  • [15] W.J. Huang, R. Sun, J. Tao, L.D. Menard, R.G. Nuzzo, J.M. Zuo, Nature Mater. 7, 308 (2008), doi: 10.1038/nmat2132
  • [16] S. Xiong, W. Qi, Y. Cheng, B. Huang, M. Wang, Y. Li, Phys. Chem. Chem. Phys. 13, 10648 (2011), doi: 10.1039/C0CP02102D
  • [17] DL_POLY: a molecular dynamics simulation package was written by W. Smith, T.R. Forester, I.T. Todorov obtained from the website http://www.ccp5.ac.uk/DL_POLY

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv129n4028kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.