Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 129 | 1a | A-44-A-47

Article title

Controlling the Biexciton-Exciton Cascade Kinetics in a Quantum Dot via Coupling to a Microcavity Optical Mode

Content

Title variants

Languages of publication

EN

Abstracts

EN
The luminescence of single and two exciton states in a quantum dot embedded in the active layer of a micropillar cavity has been investigated. Temperature tuning has been used to bring the energy states of the quantum dot and the cavity into resonance. Studying the resonance behavior of the exciton and biexciton transitions with cavity mode revealed a similar Purcell effect for both lines. The cavity-induced changes of the respective radiative lifetimes have been shown to allow for controlling the ratio between the single and two exciton occupation and their relative emission rates in a single quantum dot.

Keywords

Contributors

author
  • Laboratory for Optical Spectroscopy of Nanostructures, Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom
  • Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka 142432, Russia
  • Institute of Solid State Physics, Berlin University of Technology, Berlin 10623, Germany
author
  • Technische Physik, University of Würzburg and Wilhelm-Conrad-Röntgen-Research Center for Complex Material Systems, Am Hubland, Würzburg 97074, Germany

References

  • [1] E.M. Purcell, Phys. Rev. 69, 681 (1946), doi: 10.1103/PhysRev.69.674.2
  • [2] P. Goy, J.M. Raimond, M. Cross, S. Haroche, Phys. Rev. Lett. 50, 1903 (1983), doi: 10.1103/PhysRevLett.50.1903
  • [3] G. Gabrielse, H. Dehmelt, Phys. Rev. Lett. 55, 67 (1985), doi: 10.1103/PhysRevLett.55.67
  • [4] R.G. Hulet, E.S. Hilfer, D. Kleppner, Phys. Rev. Lett. 55, 2137 (1985), doi: 10.1103/PhysRevLett.55.2137
  • [5] J.P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L.V. Keldysh, V.D. Kulakovskii, T.L. Reinecke, A. Forchel, Nature 432, 197 (2004), doi: 10.1038/nature02969
  • [6] T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. Gibbs, G. Rupper, C. Ell, O. Shchekin, D. Deppe, Nature 432, 200 (2004), doi: 10.1038/nature03119
  • [7] K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E.L. Hu, A. Imamoglu, Nature 445, 896 (2007), doi: 10.1038/nature05586
  • [8] J.P. Vasco, P.S.S. Guimarães, D. Gerace, Phys. Rev. B 90, 155436 (2014), doi: 10.1103/PhysRevB.90.155436
  • [9] A. Imamoglu, D.D. Awschalom, G. Burkard, D.P. DiVincenzo, D. Loss, M. Sherwin, A. Small, Phys. Rev. Lett. 83, 4204 (1999), doi: 10.1103/PhysRevLett.83.4204
  • [10] Z. Yuan, B.E. Kardynal, R.M. Stevenson, A.J. Shields, C.J. Lobo, K. Cooper, N.S. Beattie, D.A. Ritchie, M. Pepper, Science 295, 102 (2002), doi: 10.1126/science.1066790
  • [11] P. Michler, A. Kiraz, C. Becher, W.V. Schoenfeld, P.M. Petroff, L. Zhang, E. Hu, A. Imamoglu, Science 290, 2282 (2000), doi: 10.1126/science.290.5500.2282
  • [12] T. Jakubczyk, H. Franke, T. Smoleński, M. Ściesiek, W. Pacuski, A. Golnik, R. Schmidt-Grund, M. Grundmann, C. Kruse, D. Hommel, P. Kossacki, ACS Nano 8, 9970 (2014), doi: 10.1021/nn5017555
  • [13] C. Kistner, K. Morgener, S. Reitzenstein, C. Schneider, S. Höfling, L. Worschech, A. Forchel, P. Yao, S. Hughes, Appl. Phys. Lett. 96, 221102 (2010), doi: 10.1063/1.3442912
  • [14] A.K. Nowak, S.L. Portalupi, V. Giesz, O. Gazzano, C. Dal Savio, P.-F. Braun, K. Karrai, C. Arnold, L. Lanco, I. Agnes, A. Lemaître, P. Senellart, Nature Commun. 5, 3240 (2013), doi: 10.1038/ncomms4240
  • [15] T. Heindel, C. Schneider, M. Lermer, S.H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, A. Forchel, Appl. Phys. Lett. 96, 011107 (2010), doi: 10.1063/1.3284514
  • [16] A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, P. Senellart, Nature 466, 217 (2010), doi: 10.1038/nature09148
  • [17] J.M. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, V. Thierry-Mieg, Phys. Rev. Lett. 81, 1110 (1998), doi: 10.1103/PhysRevLett.81.1110
  • [18] G.S. Solomon, M. Pelton, Y. Yamomoto, Phys. Rev. Lett. 86, 3903 (2001), doi: 10.1103/PhysRevLett.86.3903
  • [19] T.D. Happ, I.I. Tartakovskii, V.D. Kulakovskii, J.-P. Reithmaier, M. Kamp, A. Forchel, Phys. Rev. B 66, 041303 (2002), doi: 10.1103/PhysRevB.66.205310
  • [20] A. Musiał, C. Hopfmann, T. Heindel, C. Gies, M. Florian, H.A.M. Leymann, A. Foerster, C. Schneider, F. Jahnke, S. Höfling, M. Kamp, S. Reitzenstein, Phys. Rev. B 91, 205310 (2015), doi: 10.1103/PhysRevB.91.205310
  • [21] Yueh-Nan Chen, Der-San Chuu, Phys. Rev. B 66, 165316 (2002), doi: 10.1103/PhysRevB.66.165316
  • [22] P. Gold, M. Gschrey, C. Schneider, S. Höfling, A. Forchel, M. Kamp, S. Reitzenstein, Phys. Rev. B 86, 161301(R) (2012), doi: 10.1103/PhysRevB.86.161301

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv129n1a07kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.