Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 128 | 5 | 845-848

Article title

Channeling Study of Co and Mn Implanted and Thermally Annealed Wide Band-Gap Semiconducting Compounds

Content

Title variants

Languages of publication

EN

Abstracts

EN
The defect build-up, structure recovery and lattice location of transition metals in ion bombarded and thermally annealed ZnO and GaN single crystals were studied by channeled Rutherford backscattering spectrometry and channeled particle-induced X-ray emission measurements using 1.57 MeV ⁴He ions. Ion implantation to a fluence of 1.2×10¹⁶ ions/cm² was performed using 120 keV Co and 120 keV Mn ions. Thermal annealing was performed at 800°C in argon flow. Damage distributions were determined using the Monte Carlo McChasy simulation code. The simulations of channeled Rutherford backscattering spectra reveal that the ion implantation leads to formation of two types of defect structures in ZnO and GaN such as point and extended defects, such as dislocations. The concentrations of both types of defects are at a comparable level in both structures and for both implanted ions. Differences between both implantations appear after thermal annealing where the Mn-doped ZnO reveals much better transition metals substitution and recovery effect.

Keywords

Discipline

Year

Volume

128

Issue

5

Pages

845-848

Physical description

Dates

published
2015-11

Contributors

author
  • National Centre for Nuclear Research, A. Sołtana 7, 05-400 Otwock, Poland
author
  • National Centre for Nuclear Research, A. Sołtana 7, 05-400 Otwock, Poland
author
  • National Centre for Nuclear Research, A. Sołtana 7, 05-400 Otwock, Poland
  • National Centre for Nuclear Research, A. Sołtana 7, 05-400 Otwock, Poland
author
  • National Centre for Nuclear Research, A. Sołtana 7, 05-400 Otwock, Poland
author
  • Instituut voor Kern-en Stralingsfysica, KU Leuven, 3001 Leuven, Belgium

References

  • [1] J.K. Furdyna, J. Appl. Phys. 64, R29 (1988), doi: 10.1063/1.341700
  • [2] S.J. Pearton, D.P. Norton, M.P. Ivill, A.F. Hebard, J.M. Zavada, W.M. Chen, I.A. Buyanova, J. Electron. Mater. 36, 462 (2007), doi: 10.1007/s11664-006-0034-z
  • [3] I. Zutić, J. Fabian, S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004), doi: 10.1103/RevModPhys.76.323
  • [4] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019 (2000), doi: 10.1126/science.287.5455.1019
  • [5] K. Sato, H. Katayama-Yoshida, Semicond. Sci. Technol. 17, 367 (2002), doi: 10.1088/0268-1242/17/4/309
  • [6] R.P. Borges, J.V. Pinto, R.C. da Silva, A.P. Goncalves, M.M. Cruz, M. Godinho, J. Magn. Magn. Mater. 316, e191 (2007), doi: 10.1016/j.jmmm.2007.02.109
  • [7] S. Zhou, K. Potzger, J. von Borany, R. Grötzschel, W. Skorupa, M. Helm, J. Fassbender, Phys. Rev. B 77, 035209 (2008), doi: 10.1103/PhysRevB.77.035209
  • [8] K. Potzger, S. Zhou, Phys. Status Solidi B 246, 1147 (2009), doi: 10.1002/pssb.200844272
  • [9] S. Zhou, K. Potzger, Q. Xu, G. Talut, M. Lorenz, W. Skorupa, M. Helm, J. Fassbender, M. Grundmann, H. Schmidt, Vacuum 83, S13 (2009), doi: 10.1016/j.vacuum.2009.01.030
  • [10] A. Audren, A. Hallén, M.K. Linnarsson, G. Possnert, Nucl. Instrum. Methods Phys. Res. B 268, 1842 (2010), doi: 10.1016/j.nimb.2010.02.032
  • [11] W.K. Chu, Phys. Rev. 13, 2057 (1976), doi: 10.1103/PhysRevA.13.2057
  • [12] M. Mayer, in: Workshop on Nuclear Data for Science and Technology: Materials Analysis Trieste, Trieste 2003, p. 55 http://users.ictp.it/ pub_off/lectures/lns022/Mayer_1/Mayer_1.pdf
  • [13] T.B. Johansson, K.R. Axelsson, S.A.E. Johansson, Nucl. Instrum. Methods Phys. Res. B 84, 141 (1970), doi: 10.1016/0029-554X(70)90751-2
  • [14] L. Nowicki, A. Turos, R. Ratajczak, A. Stonert, F. Garrido, Nucl. Instrum. Methods Phys. Res. B 240, 277 (2005), doi: 10.1016/j.nimb.2005.06.129
  • [15] A. Turos, P. Jóźwik, L. Nowicki, N. Sathish, Nucl. Instrum. Methods Phys. Res. B 332, 50 (2014), doi: 10.1016/j.nimb.2014.02.028
  • [16] A. Stonert, K. Pągowska, R. Ratajczak, P. Caban, W. Strupinski, A. Turos, Nucl. Instrum. Methods Phys. Res. B 266, 1224 (2008), doi: 10.1016/j.nimb.2007.12.054
  • [17] Z. Werner, R. Ratajczak, J. Gosk, M. Barlak, A. Twardowski, C. Pochrybniak, Q. Zhao, Appl. Surf. Sci. 310, 242 (2014), doi: 10.1016/j.apsusc.2014.03.104
  • [18] F.W. Kleinlein, R. Helbig, Z. Phys. 266, 201 (1974), doi: 10.1007/BF01668841
  • [19] O. Koskelo, J. Raisanen, F. Tuomisto, D. Eversheim, K. Grasza, A. Mycielski, Thin Solid Films 518, 3894 (2010), doi: 10.1016/j.tsf.2009.11.081

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv128n508kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.