Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 128 | 4 | 578-581

Article title

Activation Energy for Grain Growth of the Isochronally Annealed Ultrafine Grained Magnesium Alloy after Hot Extrusion and Equal-Channel Angular Pressing (EX-ECAP)

Content

Title variants

Languages of publication

EN

Abstracts

EN
Magnesium alloy AZ31 prepared by hot extrusion and 4 passes of equal-channel angular pressing (EX-ECAP) has ultra-fine grained microstructure with an average grain size of 900 nm. Grain growth is analysed using a general equation for the grain growth and an Arrhenius equation. The calculated value of the activation energy for grain growth differs with the annealing temperature. The fitted value of activation energy for grain growth in the intermediate temperature range (210-400°C) is in accordance with the results of other authors, but it is shown in this study that such value is abnormally low and physically meaningless. More real values of apparent activation energy in this temperature range were calculated from the model assuming a linear increase of activation energy with increasing annealing temperature. Result of this linear model of evolution of activation energy in the temperature range between 210-400°C is expressed by the interval estimation of apparent activation energy values. It is concluded that the evolution of apparent activation energy can be explained by a change in the mechanism underlying the grain boundary migration. In the low temperature range, the grain boundary diffusion is dominant since the material is ultra-fine grained, whereas at higher temperatures, the lattice self-diffusion is more important.

Keywords

Contributors

author
  • Department of Physics of Materials, Charles University in Prague, Ke Karlovu 5, 121 16 Praha 2, Czech Republic
author
  • Department of Physics of Materials, Charles University in Prague, Ke Karlovu 5, 121 16 Praha 2, Czech Republic
author
  • Department of Physics of Materials, Charles University in Prague, Ke Karlovu 5, 121 16 Praha 2, Czech Republic

References

  • [1] R.Z. Valiev, T.G. Langdon, Prog. Mater. Sci. 51, 881 (2006), doi: 10.1016/j.pmatsci.2006.02.003
  • [2] Z. Horita, K. Matsubara, K. Makii, T.G. Langdon, Scr. Mater. 47, 255 (2002), doi: 10.1016/S1359-6462(02)00135-5
  • [3] K. Matsubara, Y. Miyahara, Z. Horita, T.G. Langdon, Acta Mater. 51, 3073 (2003), doi: 10.1016/S1359-6454(03)00118-6
  • [4] Y. Miyahara, Z. Horita, T.G. Langdon, Mater. Sci. Eng. A 420, 240 (2006), doi: 10.1016/j.msea.2006.01.043
  • [5] H.E. Friedrich, B.L. Mordike, Magnesium Technology: Metallurgy, Design Data, Automotive Applications, Springer Science & Business Media, Berlin 2006
  • [6] M. Janeček, S. Yi, R. Král, J. Vrátná, K.U. Kainer, J. Mater. Sci. 45, 4665 (2010), doi: 10.1007/s10853-010-4675-1
  • [7] M. Janeček, J. Čížek, J. Gubicza, J. Vrátná, J. Mater. Sci. 47, 7860 (2012), doi: 10.1007/s10853-012-6538-4
  • [8] J. Vrátná, M. Janeček, J. Čížek, D.J. Lee, E.Y. Yoon, H.S. Kim, J. Mater. Sci. 48, 4705 (2013), doi: 10.1007/s10853-013-7151-x
  • [9] J. Vrátná, B. Hadzima, M. Bukovina, M. Janeček, J. Mater. Sci. 48, 4510 (2013), doi: 10.1007/s10853-013-7173-4
  • [10] H.Y. Chao, H.F. Sun, W.Z. Chen, E.D. Wang, Mater. Charact. 62, 312 (2011), doi: 10.1016/j.matchar.2011.01.007
  • [11] H.K. Kim, J. Mater. Sci. 39, 7107 (2004), doi: 10.1023/B:JMSC.0000047560.93940.45
  • [12] H.K. Kim, W.J. Kim, Mater. Sci. Eng. A 385, 300 (2004), doi: 10.1016/j.msea.2004.06.055
  • [13] Y. Radi, R. Mahmudi, Mater. Sci. Eng. A 527, 2764 (2010), doi: 10.1016/j.msea.2010.01.029
  • [14] J. Lian, R.Z. Valiev, B. Baudelet, Acta Metall. Mater. 43, 4165 (1995), doi: 10.1016/0956-7151(95)00087-C
  • [15] J. Wang, Y. Iwahashi, Z. Horita, M. Furukawa, M. Nemoto, R.Z. Valiev, T.G. Langdon, Acta Mater. 44, 2973 (1996), doi: 10.1016/1359-6454(95)00395-9
  • [16] F.G. Helfferich, Kinetics of Multistep Reactions, Elsevier 2004
  • [17] J. Stráská, M. Janeček, J. Čížek, J. Stráský, B. Hadzima, Mater. Charact. 94, 69 (2014), doi: 10.1016/j.matchar.2014.05.013
  • [18] G. Gottstein, Physical Foundations of Materials Science, Springer, Berlin 2004
  • [19] P. Cao, L. Lu, M.O. Lai, Mater. Res. Bull. 36, 981 (2001), doi: 10.1016/S0025-5408(01)00578-5
  • [20] M.A. Thein, L. Lu, M.O. Lai, Compos. Sci. Technol. 66, 531 (2006), doi: 10.1016/j.compscitech.2005.07.002
  • [21] Q. Miao, L. Hu, X. Wang, E. Wang, J. Alloys Comp. 493, 87 (2010), doi: 10.1016/j.jallcom.2009.12.049
  • [22] H.J. Frost, M.F. Ashby, Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics, Pergamon Press, New York 1982

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv128n426kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.