Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 128 | 3 | 252-255

Article title

Lie Symmetry Reductions, Exact Solutions and Conservation Laws of the Third Order Variant Boussinesq System

Content

Title variants

Languages of publication

EN

Abstracts

EN
The Lie group method is applied to the third order variant Boussinesq system, which arises in the modelling of the water waves. The symmetry reductions and invariant solutions are obtained with respect to Lie point symmetry generators of the underlying system. In addition, we derive conservation laws of the variant Boussinesq system.

Keywords

EN

Year

Volume

128

Issue

3

Pages

252-255

Physical description

Dates

published
2015-09
received
2015-03-27

Contributors

author
  • Department of Mathematics, Faculty of Arts and Sciences, Uludag University, 16059, Bursa, Turkey
author
  • Department of Mathematics, Faculty of Arts and Sciences, Uludag University, 16059, Bursa, Turkey

References

  • [1] V.O. Vakhnenko, E.J. Parkes, A.J. Morrison, Chaos Solitons Fract. 17, 683 (2003), doi: 10.1016/S0960-0779(02)00483-6
  • [2] R. Hirota, Phys. Rev. Lett. 27, 1192 (1971), doi: 10.1103/PhysRevLett.27.1192
  • [3] Y. Ma, X. Geng, Appl. Math. Comput. 218, 6963 (2012), doi: 10.1016/j.amc.2011.12.077
  • [4] A. Zerarka, S. Ouamane, S. Attaf, Appl. Math. Comput. 217, 2897 (2010), doi: 10.1016/j.amc.2010.08.070
  • [5] M.L. Wang, Y.B. Zhou, Z.B. Li, Phys. Lett. A 216, 67 (1996), doi: 10.1016/0375-9601(96)00283-6
  • [6] A. Bekir, Commun. Nonlin. Sci. Numer. Simulat. 13, 1748 (2008), doi: 10.1016/j.cnsns.2007.05.001
  • [7] A. Bekir, Phys. Lett. A 372, 3400 (2008), doi: 10.1016/j.physleta.2008.01.057
  • [8] E. Fan, Y.C. Hon, Chaos Solitons Fract. 15, 559 (2003), doi: 10.1016/S0960-0779(02)00144-3
  • [9] B. Muatjetjeja, C.M. Khalique, Abstract Appl. Anal. 2014, 169694 (2014), doi: 10.1155/2014/169694
  • [10] M. Wang, Phys. Lett. A 199, 169 (1995), doi: 10.1016/0375-9601(95)00092-H
  • [11] R. Naz, F.M. Mahomed, T. Hayat, Appl. Math. Lett. 23, 883 (2010), doi: 10.1016/j.aml.2010.04.003
  • [12] I.M. Anderson, M.E. Fels, C.G. Torre, Commun. Math. Phys. 212, 653 (2000), doi: 10.1007/s002200000215
  • [13] G.W. Bluman, S.C. Anco, Symmetry and Integration Methods for Differential Equations, Vol. 154 of Applied Mathematical Sciences, Springer, New York 2002
  • [14] P.J. Olver, Application of Lie Groups to Differential Equations, Springer-Verlag, New York 1993
  • [15] N.H. Ibragimov, CRC Handbook of Lie Group Analysis of Differential Equations, Vol. 1, Symmetries, Exact Solutions and Conservation Laws, CRC Press, Boca Raton, Florida 1995
  • [16] C. Rogers, W. Shadwick, Nonlinear Boundary Value Problems in Science and Engineering, Mathematics in Science and Enginering, Vol. 183, Ed. W.F. Ames, Academic Press, Boston 1989
  • [17] N.H. Ibragimov, R. Khamitova, B. Thide, J. Math. Phys. 48, 053523 (2007), doi: 10.1063/1.2735822
  • [18] A.F. Cheviakov, Comput. Phys. Commun. 176, 48 (2007), doi: 10.1016/j.cpc.2006.08.001
  • [19] H. Steudel, Z. Naturforsch. 17A, 129 (1962), doi: 10.1515/zna-1962-0204
  • [20] A.H. Kara, F.M. Mahomed, Int. J. Theor. Phys. 39, 23 (2000), doi: 10.1023/A:1003686831523
  • [21] A.H. Kara, F.M. Mahomed, Nonlinear Dynam. 45, 367 (2006), doi: 10.1007/s11071-005-9013-9
  • [22] S.C. Anco, G.W. Bluman, Eur. J. Appl. Math. 13, 545 (2002), doi: 10.1017/S095679250100465X
  • [23] A.R. Adem, C.M. Khalique, Comput. Fluids 81, 10 (2013), doi: 10.1016/j.compfluid.2013.04.005
  • [24] A.R. Adem, C.M. Khalique, Commun. Nonlin. Sci. Numer. Simulat. 17, 3465 (2012), doi: 10.1016/j.cnsns.2012.01.010
  • [25] H. Triki, A.H. Kara, A.H. Bhrawy, A. Biswas, Acta Phys. Pol. A 125, 1099 (2014), doi: 10.12693/APhysPolA.125.1099
  • [26] I.E. Mhlanga, C.M. Khalique, J. Appl. Math. 2012, 389017 (2012), doi: 10.1155/2012/389017
  • [27] N.H. Ibragimov, J. Math. Anal. Appl. 333, 311 (2007), doi: 10.1016/j.jmaa.2006.10.078
  • [28] N.A. Kudryashov, Chaos Solitons Fract. 24, 1217 (2005), doi: 10.1016/j.chaos.2004.09.109
  • [29] N.A. Kudryashov, Phys. Lett. A 342, 99 (2005), doi: 10.1016/j.physleta.2005.05.025
  • [30] H. Jafari, N. Kadkhoda, C.M. Kahlique, Abstract Appl. Anal. 2012, 350287 (2012), doi: 10.1155/2012/350287
  • [31] R.J. LeVeque, Numerical Methods for Conservation Laws, Lectures in Mathematics, Birkhauser Verlag, Basel 1992
  • [32] T. Wolf, Europ. J. Appl. Math. 2, 129 (2002), doi: 10.1017/S0956792501004715
  • [33] A.H. Bokhari, A.Y. Al-Dweik, A.H. Kara, F.M. Mahomed, F.D. Zaman, Commun. Nonlin. Sci. Numer. Simulat. 16, 1244 (2011), doi: 10.1016/j.cnsns.2010.07.007

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv128n302kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.