Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 6 | 1711-1716

Article title

The Electromotive Force Dependence on the Polycrystalline Silicon Solar Cell Illuminance

Content

Title variants

Languages of publication

EN

Abstracts

EN
The impact of illuminance on changes of the solar cell electromotive force is analyzed. A mathematical model for a solar cell electromotive force dependence on illuminance is presented. For this purpose, a selection of experimental data trend function was carried out, and the Pearson correlation coefficients were established. The most optimal results were obtained in case of an exponential function with the strongest correlation (R^2=0.983). The analysis has shown that at 100 W/m^2 illuminance the electromotive force saturation is obtained (the electromotive force changes insignificantly and fluctuates at around 2 V), which indicates that upon reaching such an illuminance a solar cell operates at maximum efficiency. A first-order differential equation satisfied by the trend function has been compiled. When interpreting illuminance as an evolution variable, the proposed mathematical model can be interpreted as a dynamical system. The deviation frequency spectrum of the measurement values with respect to the theoretical prediction is analyzed.

Keywords

Contributors

author
  • Radiation Research Laboratory, Department of Physics, Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, Saulėtekio Ave.11, LT-10223, Vilnius, Lithuania
author
  • Radiation Research Laboratory, Department of Physics, Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, Saulėtekio Ave.11, LT-10223, Vilnius, Lithuania
  • Radiation Research Laboratory, Department of Physics, Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, Saulėtekio Ave.11, LT-10223, Vilnius, Lithuania
  • Radiation Research Laboratory, Department of Physics, Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, Saulėtekio Ave.11, LT-10223, Vilnius, Lithuania

References

  • [1] R.P. Mukund, Wind and solar power systems: design, analysis, and operation, CRC Press, Taylor &Francis Group, Singapore 2006, doi: 10.1260/030952406778606197
  • [2] T. Ma, Y. Nakamori, Energy 34, 873 (2009), doi: 10.1016/j.energy.2009.03.005
  • [3] T. Markvart, Photovolt. Bull. 1, 7 (2001)
  • [4] A. Luque, S.Hegedus, Handbook of Photovoltaic Science and Engineering, Wiley, New York 2011, doi: 10.1002/0470014008
  • [5] V. Adomavičius, in: Official Journal of the Lithuanian Applied Sciences Academy, University of Klaipėda), Klaipėda 2010 (in Lithuanian)
  • [6] X.Wang, Z.M. Wang, High-Efficiency Solar Cells: Physics, Materials, and Devices, Springer, Berlin 2013, doi: 10.1080/10408436.2013.834245
  • [7] A. McEvoy, T. Markvart, L. Castaner, Practical Handbook of Photovoltaics, Academic Press, Oxford 2011
  • [8] R. Palumbo, R.B. Diver, C.Larson, E.N. Coker, J.E. Miller, J. Guertin, J. Schoer, M. Meyer, N.P. Siegel, Chem. Eng. Sci. 84, 372 (2012), doi: 10.1016/j.ces.2012.08.023
  • [9] W. Sheline, L. Matthews, N. Lindeke, G.S. Duncan, R.D. Palumbo, Engineering Faculty Publications, 14 (2013) http://sciencedirect.com/science/article/pii/S0360544213000236
  • [10] R.B. Best, J.M.H. Aceves, J.M.S. Islas Manzini, I.F. Pilatowsky, R. Scoccia, M. Motta, Applied Thermal Eng. 50, 1447 (2013), doi: 10.1016/j.applthermaleng.2011.12.036
  • [11] N.L. Panwar, S.C. Kaushik, S. Kothari, Renew. Sustain. Energ. Rev. 15, 1513 (2011)
  • [12] P. Würfel, Physics of Solar Cells: From Basic Principles to Advanced Concepts, Wiley-VCH, Weinheim 2009
  • [13] G.R. Timilsina, L. Kurdgelashvili, P.A. Narber, Renew. Sustain. Energ. Rev. 16, 449 (2012), doi: 10.1596/1813-9450-5845
  • [14] M. Šúri, T.A. Hiild, E.G. Dunlop, PVGIS: a web-based solar radiation database for calculation of PV potential in Europe, Int. J. of Sustain. Energ. 24, 55 (2005), doi: 10.1080/14786450512331329556
  • [15] V. Mačiulis, Energijos erdvė 5, 34 (2010) (in Lithuanian)
  • [16] National Energy Strategy, project adopted by the Seimas of Republic of Lithuania on October 6, 2010, Vilnius (in Lithuanain)
  • [17] J. Nelson, The Physics of Solar Cells, Imperial College Press, London 2003
  • [18] S.J. Fonash, Solar cell device physics, Academic Press, Amsterdam 2010
  • [19] E. Lorenzo, Solar Electricity: Engineering of Photovoltaic Systems, Progensa, Spain 1994
  • [20] S. Silvestre, A. Boronat, A. Chouder, Appl. Energ. 86, 1632 (2009), doi: 10.1016/j.apenergy.2009.01.020
  • [21] A.R. Jha, Solar cell technology and applications, CRC Press. Taylor &Francis Group LLC., Boca Raton 2010, doi: 10.1117/12.859475
  • [22] M. Richter, M. Ya. Amusia, S. V. Bobashev, T. Feigl, P. N. Juranic, M. Martins, A. A. Sorokin, K. Tiedtke, Phys. Rev. Lett., 102, 163002 (2009), doi: 10.1103/PhysRevLett.102.16-3-002
  • [23] R. Slingerland, L. Kump, Mathematical Modelling of Earth's Dynamical Systems, Princeton University Press, Princeton 2011, doi: 10.1002/gj.2492
  • [24] A.A. Samarskij, A.P. Mihajlov, Mathematical modeling: Ideas, Methods, Examples, 2 ed., Moscow 2001 (in Russian), doi: 10.1029/2001~GC~000252
  • [25] W.P. Fox, F.R. Goirdano, M.D. Weir, First Course in Mathematical Modeling, Tomson Learning, Kindom 2003
  • [26] P.A. Iles, IRE Trans. Milit. Electron. 6, 5 (1962), doi: 10.1016/0038-1101(69)90059-8
  • [27] A. Ambroziak, Construction and technology of photovoltaic devices, Scientific-Technical Publishers, Warsaw 1965 (in Polish)
  • [28] B. Mandelbrot, The Fractal Geometry of Nature, W.H. Freeman, New York 1983, doi: 10.1002/esp.3290080415
  • [29] D. Guasch, S. Silvestre, Progr. Photovolt. Res. Appl. 11, 193 (2003), doi: 10.1002/pip.480
  • [30] L. Castaner, S. Silvestre, Modelling photovoltaic systems using PSpice, John Wiley, Chichester 2002, doi: 10.1002/0470855541
  • [31] V.I. Arnold, Ordinary differential equations, Springer Verlag, Berlin 1992, doi: 10.1007/978-94-007-534-7
  • [32] W.A. Adkins, M.G. Davidson, Ordinary differential equations, Springer, New York 2012, doi: 10.1007/978-1-4614-3618-8
  • [33] P. Miškinis, Nonlinear and nonlocal integrable models, Technika, Vilnius 2003 (in Lithuanian)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv127n626kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.