Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 126 | 4a | A-20-A-25

Article title

Electrical Control of Spin Relaxation Time in Complex Quantum Nanostructures

Content

Title variants

Languages of publication

EN

Abstracts

EN
Spin related phenomena in quantum nanostructures have attracted recently much interest due to fast growing field of spintronics. In particular complex nanostructures are important as they provide a versatile system to manipulate spin and the electronic states. Such systems can be used as spin memory devices or scalable quantum bits. We investigate the spin relaxation for an electron in a complex structure composed of a quantum dot surrounded by a quantum ring. We shown that modifications of the confinement potential result in the substantial increase of the spin relaxation time.

Keywords

Contributors

author
  • Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
  • Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
  • Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
author
  • Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
author
  • Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland

References

  • [1] R. Hanson, L.P. Kouwenhoven, J.R. Petta, S. Tarucha, L.M.K. Vandersypen, Rev. Mod. Phys. 79, 1217 (2007), doi: 10.1103/RevModPhys.79.1217
  • [2] L.M.K. Vandersypen, R. Hanson, L.H. Willems van Beveren, J.M. Elzerman, J.S. Greidanus, S. De Franceschi, L. P. Kouwenhoven, Quantum Computing, Quantum Bits in Mesoscopic Systems, Eds. A. Leggett, B. Ruggiero, P. Silvestrini, Kluwer Academic Plenum Publisher, New York 2004, doi: 10.1007/978-1-4419-9092-1
  • [3] A.V. Khaetskii, Y.V. Nazarov, Phys. Rev. B 64, 125316 (2001), doi: 10.1103/PhysRevB.64.125316
  • [4] M. Bayer, S.N. Welsch, T.L. Reinecke, A. Forchel, Phys. Rev. B 57, 6584 (1998), doi: 10.1103/PhysRevB.57.6584
  • [5] E. Zipper, M. Kurpas, M.M. Maśka, New J. Phys. 14, 093029 (2012), doi: 10.1088/1367-2630/14/9/093029
  • [6] B. Szafran, F.M. Peeters, S. Bednarek, Phys. Rev. B 70, 125310 (2004), doi: 10.1103/PhysRevB.70.125310
  • [6a] K. Lis, S. Bednarek, B. Szafran, J. Adamowski, Physica E 17, 494 (2003), doi: 10.1016/S1386-9477(02)00852-4
  • [7] N.B. Zhitenev, M. Brodsky, R.C. Ashoori, L.N. Pfeiffer, K.W. West, Science 285, 715 (1999), doi: 10.1126/science.285.5428.715
  • [8] C. Somaschini, S, Bietti, N. Sanguinetti, S. Koguchi, Nanotechnology 22, 185602 (2011), doi: 10.1088/0957-4484/22/18/185602
  • [8a] S. Sanguinetti, C. Somaschini, S. Bietti, N. Koguchi, Nanomater., Nanotechnol. 1, 14 (2011), doi: 10.5772/50944
  • [9] J.M. Elzerman, R. Hanson, L.H. Willems van Beveren, B. Witkamp, L.M.K. Vandersypen, L.P. Kouwenhoven, Nature 430, 431 (2004), doi: 10.1038/nature02693
  • [10] T. Mano, T. Kuroda, K. Mitsuishi, M. Yamagiwa, X.-J. Guo, K. Furuya, K. Sakoda, N. Koguchi, J. Crystal Growth 301, 740 (2007), doi: 10.1016/j.jcrysgro.2006.11.216
  • [10a] T. Kuroda, T. Mano, T. Ochiai, S. Sanguinetti, K. Sakoda, G. Kido, N. Koguchi, Phys. Rev. B 72, 20530 (2005), doi: 10.1103/PhysRevB.72.205301
  • [11] T.D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J.L. O'Brienl, Nature 464, 45 (2010), doi: 10.1038/nature08812
  • [12] M. Abbarchi, C.A. Mastrandrea, A. Vinattieri, S. Sanguinetti, T. Mano, T. Kuroda, N. Koguchi, K. Sakoda, M. Gurioli, Phys. Rev. B 79, 085308 (2009), doi: 10.1103/PhysRevB.79.085308
  • [13] R.A. Żak, B. Röthlisberger, S. Chesi, Da. Loss, Riv. Nuovo Cimento 33, 345 (2010), doi: 10.1393/ncr/i2010-10056-y
  • [14] V.N. Golovach, A.V. Khaetskii, D. Loss, Phys. Rev. Lett. 93, 016601 (2004), doi: 10.1103/PhysRevLett.93.016601
  • [15] P. Stano, J. Fabian, Phys. Rev. B 72, 155410 (2005), doi: 10.1103/PhysRevB.72.155410
  • [16] M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, J.J. Finley, Nature 432, 81 (2004), doi: 10.1038/nature03008
  • [17] S. Amasha, K. MacLean, I.P. Radu, D.M. Zumbühl, M.A. Kastner, M.P. Hanson, A.C. Gossard, Phys. Rev. Lett. 100, 046803 (2008), doi: 10.1103/PhysRevLett.100.046803
  • [18] D. Heiss, V. Jovanov, F. Klotz, D. Rudolph, M. Bichler, G. Abstreiter, M.S. Brandt, J.J. Finley, Phys. Rev. B 82, 245316 (2010), doi: 10.1103/PhysRevB.82.245316
  • [19] E. Zipper, M. Kurpas, J. Sadowski, M.M. Maśka, J. Phys. Condens. Matter 23 115302 (2011), doi: 10.1088/0953-8984/23/11/115302
  • [20] T. Ouchterlony, I.V. Zozoulenko, C.K. Wang, K.F. Bergen, C. Gould, A.S. Sachrajda, Eur. Phys. J. B 10, 361 (1999), doi: 10.1007/s100510050865
  • [21] W. Yao, R.-B. Liu, L.J. Scham, Phys. Rev. B 74, 195301 (2006), doi: 10.1103/PhysRevB.74.195301
  • [22] H. Bluhm, S. Foletti, I. Neder, M. Rudner, D. Mahalu, V. Umansky, A. Yacoby, arXiv:1005.2995 (2010)
  • [23] X. Xu, W. Yao, B. Sun, D.G. Steel, A.S. Bracker, D. Gammon, L.J. Sham, Nature 459, 1105 (2009), doi: 10.1038/nature08120
  • [24] G. Giedke, J.M. Taylor, D. D'Alessandro, M.D. Lukin, A. Imamoglu, Phys. Rev. A 74, 032316 (2006), doi: 10.1103/PhysRevA.74.032316
  • [25] M. Raith, P. Stano, J. Fabian, Phys. Rev. B 83, 195318 (2011), doi: 10.1103/PhysRevB.83.195318
  • [26] R. Hanson, D.D. Awschalom, Nature 453, 1043 (2008), doi: 10.1038/nature07129

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv126n4a04kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.