Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 125 | 6 | 1326-1329

Article title

Spectroscopic Study of CO_2 Plasma in Microwave Source Designed for Hydrogen Production via Hydrocarbons Decomposition

Content

Title variants

Languages of publication

EN

Abstracts

EN
In this paper, results of spectroscopic study of microwave (2.45 GHz) plasma at atmospheric pressure and high CO_2 flow rate are presented. The plasma was generated by waveguide-supplied nozzleless cylindrical type microwave plasma source. Working gas flow rate and microwave absorbed power varied from 50 up to 150 l/min and from 1 up to 5.5 kW, respectively. The emission spectra in the range of 300-600 nm were recorded. The rotational and vibrational temperatures of C_2 molecules, as well as the rotational temperature of OH radicals were determined by comparing the measured and simulated spectra. The plasma gas temperature inferred from rotational temperature of heavy species ranged from 4000 to 6000 K. It depended on location in plasma, microwave absorbed power and working gas flow rate. The presented microwave plasma source can be used in various gas processing applications.

Keywords

Contributors

author
  • Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery Polish Academy of Sciences, J. Fiszera 14, 80-231 Gdańsk, Poland
author
  • Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery Polish Academy of Sciences, J. Fiszera 14, 80-231 Gdańsk, Poland
author
  • Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery Polish Academy of Sciences, J. Fiszera 14, 80-231 Gdańsk, Poland
  • Dept. of Marine Electronics, Gdynia Maritime University, Morska 81-87, 81-225 Gdynia, Poland

References

  • [1] T. Sato, K. Fujioka, R. Ramasamy, T. Urayama, S. Fujii, IEEE Trans. Industry Appl. 42, 399 (2006), doi: 10.1109/TIA.2006.870039
  • [2] R. Peelamedu, D. Kumar, S. Kumar, Surf. Coat. Technol. 201, 4008 (2006), doi: 10.1016/j.surfcoat.2006.08.030
  • [3] S.R. Wylie, A.I. Al-Shamma'a, J. Lucas, R.A. Stuart, J. Mater. Process. Technol. 153-4, 288 (2004), doi: 10.016/j.jmatprotec.2004.04.061
  • [4] T. Yuji, T. Urayama, S. Fujii, N. Mungkung, H. Akatsuka, Surf. Coat. Technol. 202, 5289 (2008), doi: 10.1016/j.surfcoat.2008.06.056
  • [5] M. Jasiński, M. Dors, J. Mizeraczyk, Plasma Chem. Plasma Process. 29, 363 (2009), doi: 10.1007/s11090-009-9183-1
  • [6] M. Jasiński, M. Dors, J. Mizeraczyk, J. Power Sources 181, 41 (2008), doi: 10.1016/j.jpowsour.2007.10.058
  • [7] Ch. Izarra, J. Phys. D, Appl. Phys. 33, 1697 (2000), doi: 10.1088/0022-3727/33/14/309
  • [8] E. Pawelec, Euro. Phys. J. Spec. Topics 144, 227 (2007), doi: 10.1140/epjst/e2007-00132-9
  • [9] Z. Machala, M. Janda, K. Hensel, I. Jedlovsky, L. Lestinska, V. Foltin, V. Martisovits, M. Morvova, J. Mol. Spectrosc. 243, 194 (2007), doi: 10.1016/j.jms.2007.03.001
  • [10] J. Raud, M. Laan, I. Jogi, J. Phys. D, Appl. Phys. 44, 345201 (2001), doi: 10.1088/0022-3727/44/34/345201
  • [11] B. Hrycak, D. Czylkowski, M. Jasiński, J. Mizeraczyk, Przegląd Elektrotechniczny 6, 98 (2012) http://pe.org.pl/articles/2012/6/26.pdf
  • [12] http://www.specair-radiation.net (24.05.2013)
  • [13] http://www.sri.com/psd/lifbase/ (24.05.2013)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv125n620kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.