Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 125 | 4A | A-155-A-158

Article title

Analytical Determination of Optimal Actuators Position for Single Mode Active Reduction of Fixed-free Beam Vibration Using the Linear Quadratic Problem Idea

Content

Title variants

Languages of publication

EN

Abstracts

EN
An analytical solution is obtained, based on linear quadratic problem well-known in the control theory. The problem is formulated for fixed-free beam vibration (fourth order partial differential equation) in Hilbert space and the point control and distributed output is considered. Beam deflection at any point is chosen as a criterion of optimization. In this case it means the linear quadratic problem. Up to now, the linear quadratic problem was formulated many times, but only for the time-dependent equation. The aim of the paper is to obtain the value of the cost functional formulated as the function of distribution of actuators. The minimum of this function leads to the optimal actuators location. The results obtained with this method confirm the results obtained in heuristic way and pure analytical one for separate mode; it is pointed out that the actuators ought to be bonded on the beam sub-regions in which the mode curvatures take their local maximums and the highest value.

Keywords

Contributors

author
  • Halszki 31/12, 30-611 Kraków, Poland
author
  • Laboratory of Acoustics, Department of Electrical and Computer Engineering, Rzeszów University of Technology, Wincentego Pola 2, 35-959 Rzeszów, Poland

References

  • [1] A. Brański, M. Borkowski, S. Szela, Acta Phys. Pol. A 118, 17 (2010)
  • [2] A. Brański, G. Lipiński, Acta Phys. Pol. A 119, 936 (2011)
  • [3] A. Brański, in: 10.5772/19941 Acoustic Waves, ch. 18, Intech, Rijeka 2011, p. 397, doi:10.5772/19941 Acoustic Waves, ch. 18, Intech, Rijeka 2011, p. 397
  • [4] A. Brański, Acta Phys. Pol. A 123, 1123 (2013), doi:10.12693/APhysPolA.123.1123
  • [5] M.S. Kozień, B. Kołtowski, Acta Phys. Pol. A 119, 1005 (2011)
  • [6] J. Wiciak, Acoust. Eng. 13, 5 (2004), (in Polish)
  • [7] M.S. Kozień, J. Wiciak, Acta Phys. Pol. A 116, 348 (2009)
  • [8] M.S. Kozień, J. Wiciak, Archiv. Acoust. 33, 643 (2008)
  • [9] J. Wiciak, Europ. Phys. J. ST 154, 229 (2008), doi:10.1140/epjst/e2008-00551-0
  • [10] M.S. Kozień, Acta Phys. Pol. A 123, 6 (2013), doi:10.12693/APhysPolA.123.1029
  • [11] I. Bruant, L. Gallimard, S. Nikoukar, J. S. V. 329, 1615 (2010), doi:10.1016/j.jsv.2009.12.001
  • [12] I. Bruant, G. Coffignal, F. Lene, M. Verge, J. S. V. 243, 861 (2001), doi:10.1006/jsvi.2000.3448
  • [13] A. Brański, S. Szela, Archiv. Acoust. 33, 413 (2008)
  • [14] M. Weiss, Ph.D. thesis, University of Groningen, 1994
  • [15] S.M. Yang, Y.J. Lee, Smart Mater. Struct. 2, 96 (1993), doi:10.1088/0964-1726/2/2/005

Document Type

Publication order reference

YADDA identifier

bwmeta1.element.bwnjournal-article-appv125n4a30kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.