Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 125 | 4A | A-108-A-112

Article title

Phase-Locked Particle Image Velocimetry Visualization of the Sound Field at the Outlet of a Circular Tube

Content

Title variants

Languages of publication

EN

Abstracts

EN
The shedding process and acoustic flow formation in the region of outlet of a cylinder duct has been investigated by means of the particle image velocimetry (PIV) technique. The research work on the behavior of the sound field at outlets of waveguides addresses issues of importance to industrial applications. The obtained results can be used in a number of industrial applications involving pipes, ducts and tubing. In our investigation the acoustics flow fields are measured with a phase-locked PIV system with high sampling rate and large internal memory block using DAVIS v. 8.11 software. A cross-correlation method, in conjunction with the FFT analysis, is used as a vector processing algorithm. A series of PIV vector maps was used to evaluate the acoustic velocity field at the open end of circular tube throughout the acoustic cycle for frequencies of 700 Hz and 1400 Hz. Six phase steps were assumed for one frequency cycle and the characteristic signal was extracted from the velocity data step and shown graphically.

Keywords

Year

Volume

125

Issue

4A

Pages

A-108-A-112

Physical description

Dates

published
2014-04

Contributors

author
  • West Pomeranian University of Technology, al. Piastów 17, 70-310 Szczecin, Poland
author
  • West Pomeranian University of Technology, al. Piastów 17, 70-310 Szczecin, Poland

References

  • [1] J. Sung, J.Y. Yoo, Meas. Sci. Technol. 12, 655 (2001), doi:10.1088/0957-0233/12/6/301
  • [2] D.B. Hann, C.A. Greated, Meas. Sci. Technol. 8, 1517 (1997), doi:10.1088/0957-0233/8/12/014
  • [3] S.C. Roh, S.O. Park, Experiments in Fluids 34, 63 (2003), doi:10.1007/s00348-002-0532-6
  • [4] A. Henning, K. Kaepernick, K. Ehrenfried, L. Koop, A. Dillmann, Experiments in Fluids 45, 1073 (2008), doi:10.1007/s00348-008-0528-y
  • [5] R. Macdonald, D. Skulina, M. Campbell, J-Ch. Valerie, D. Marx, H. Bailliet, 10-eme Congres Francais d'Acoustique, Lyon 2010
  • [6] J. Westerweel, Meas. Sci. Technol. 8, 1379 (1997), doi:10.1088/0957-0233/8/12/002
  • [7] M.J. Lighthill, Proc. R. Soc. A 211, 564 (1952), doi:10.1098/rspa.1952.0060
  • [8] M.S. Howe, Theory of Vortex Sound, Cambridge Univ. Press, Cambridge 2003
  • [9] S. Weyna, W. Mickiewicz, M. Pyła, M. Jabłoński, Arch. Acous. 38(2), 217 (2013)
  • [10] F.D. Marx, H. Bailliet, J.-Ch. Valiere, Acta Acust. with Acust. 94, 54 (2008), doi:10.3813/AAA.918008
  • [11] F.J. Fahy, Sound Intensity, CRC Press, London 1995
  • [12] S. Weyna, XX Fluid Mechanics Conf., S27-2, 2012
  • [13] R.J. Adrian, Exp. Fluids 39, 159 (2005), doi:10.1007/s00348-005-0991-7
  • [14] M. Raffel, C. Willert, J. Kompenhans, Particle image velocimetry: a practical guide, Springer, New York 2002
  • [15] S. Moreau, H. Bailliet, J-Ch. Valiere, R. Boucheron, G. Poignand, Acta Acust. with Acust. 95, 805 (2009), doi:10.3812/AAA.918211
  • [16] W.H. Snyder, J.L. Lumley, J. Fluid Mech. 48, 41 (1971), doi:10.1017/S0022112071001460
  • [17] D.A. Siegel, A.J. Plueddemann, J. Atmos. Ocean. Technol. 8, 296 (1991), doi:10.1175/1520-0426(1991)008<0296:TMOASS>2.0.CO;2
  • [18] J.P. Dalmont, C.J. Nederveen, N. Joly, J. Sound Vib. 244(3), 505 (2001), doi:10.1006/jsvi.2000.3487
  • [19] B.W. Oudheusden, F. Scarano, Exp. Fluids 39, 86 (2005), doi:10.1007/s00348-005-0985-5
  • [20] L. Laurenco, S. Subramanian, Z. Ding, Meas. Sci. Technol. 8, 1533 (1997), doi:10.1088/0957-0233/8/12/016

Document Type

Publication order reference

YADDA identifier

bwmeta1.element.bwnjournal-article-appv125n4a21kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.