Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 123 | 1 | 16-20

Article title

Some Exact and Explicit Solutions for Nonlinear Schrödinger Equations

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
Nonlinear models occur in many areas of applied physical sciences. This paper presents the first integral method to carry out the integration of Schrödinger-type equations in terms of traveling wave solutions. Through the established first integrals, exact traveling wave solutions are obtained under some parameter conditions.

Keywords

EN

Year

Volume

123

Issue

1

Pages

16-20

Physical description

Dates

published
2013-01
received
2012-05-28
(unknown)
2012-10-22

Contributors

author
  • Department of Mathematics, Izmir Institute of Technology, Urla, Izmir 35430, Turkey

References

  • [1] J. Weiss, M. Tabor, G. Carnevale, J. Math. Phys. 24, 522 (1983)
  • [2] M.J. Ablowitz, H. Segur, Solitons and Inverse Scattering Transform, SIAM, Philadelphia 1981
  • [3] A.M. Wazwaz, Appl. Math. Comput. 201, 489 (2008)
  • [4] W.X. Ma, Chaos Solitons Fract. 42, 1356 (2009)
  • [5] G.W. Bluman, S. Kumei, Symmetries and Differential Equations, Springer-Verlag, New York 1989
  • [6] A.M. Wazwaz, Appl. Math. Comput. 154, 713 (2004)
  • [7] M.L. Wang, Phys. Lett. A 213, 279 (1996)
  • [8] M.A. Abdou, Chaos Solitons Fract. 31, 95 (2007)
  • [9] M. Wang, X. Li, J. Zhang, Phys. Lett. A 372, 417 (2008)
  • [10] J.H. He, X.H. Wu, Chaos Solitons Fract. 30, 700 (2006)
  • [11] J.H. He, Appl. Math. Comput. 151, 287 (2004)
  • [12] A. Biswas, H. Triki, Appl. Math. Comput. 217, 3869 (2010)
  • [13] D. Wang, H.Q. Zhang, Chaos Solitons Fract. 25, 601 (2005)
  • [14] W.X. Ma, T. Huang, Y. Zhang, Phys. Scr. 82, 065003 (2010)
  • [15] M. Dehghan, A. Hamidi, M. Shakourifar, Appl. Math. Comput. 189, 1034 (2007)
  • [16] W.X. Ma, Y. Zhang, Y. Tang, J. Tu, Appl. Math. Comput. 218, 7174 (2012)
  • [17] Z. Feng, Phys. Lett. A. 293, 57 (2002)
  • [18] Z. Feng, X. Wang, Phys. Scr. 64, 7 (2001)
  • [19] Z. Feng, J. Phys. A, Math. Gen. 35, 343 (2002)
  • [20] X. Deng, Appl. Math. Comput. 204, 733 (2008)
  • [21] Z. Feng, S. Zheng, D.Y. Gao, Z. Angew. Math. Phys. 60, 756 (2009)
  • [22] Naranmandula, K.X. Wang, Chin. Phys. 13, 139 (2004)
  • [23] Z. Feng, R. Knobel, J. Math. Anal. Appl. 328, 1435 (2007)
  • [24] İ. Aslan, Appl. Math. Comput. 217, 8134 (2011)
  • [25] S. Abbasbandy, A. Shirzadi, Commun. Nonlinear Sci. Numer Simul. 15, 1759 (2010)
  • [26] K.R. Raslan, Nonlinear Dyn. 53, 281 (2006)
  • [27] İ. Aslan, Pramana-J. Phys. 76, 1 (2011)
  • [28] T.R. Ding, C.Z. Li, Ordinary Differential Equations, Peking University Press, Peking 1996
  • [29] Z. Feng, Electron J. Linear Algebra 8, 14 (2001)
  • [30] N. Bourbaki, Commutative Algebra, Addison-Wesley, Paris 1972
  • [31] C.Q. Bian, J. Pang, L.H Jin, X.M. Ying, Commun. Nonlinear Sci. Numer. Simul. 15, 2337 (2010)
  • [32] W.X. Ma, J. Phys. A, Math. Gen. 26, L17 (1993)
  • [33] W.X. Ma, M. Chen, Appl. Math. Comput. 215, 2835 (2009)
  • [34] A. Biswas, S. Konar, Introduction to Non-Kerr Law Optical Solitons, CRC Press, Florida 2007

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv123n104kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.