Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 122 | 1 | 180-183

Article title

Next Nearest Neighbors Effects on Berry Curvature of Graphene

Content

Title variants

Languages of publication

EN

Abstracts

EN
In this paper energy bands and Berry curvature of graphene was studied. Desired Hamiltonian regarding the next-nearest neighbors was obtained by tight-binding model. By using the second quantization approach, the transformation matrix is calculated and the Hamiltonian of system is diagonalized. With this Hamiltonian, the band structure and wave function can be calculated. By using calculated wave function the Berry connection and Berry curvature of our system are calculated. Our results are exactly consistent with previous methods and also the Berry curvature throughout the Brillouin zone get zero.

Keywords

EN

Contributors

  • Department of Physics, Faculty of Science, P.O. Box 16575-347, I.H.U Tehran, Iran
author
  • Department of Physics, Faculty of Science, P.O. Box 16575-347, I.H.U Tehran, Iran
author
  • Department of Physics, Faculty of Science, P.O. Box 16575-347, I.H.U Tehran, Iran
author
  • Department of Physics, Faculty of Science, P.O. Box 16575-347, I.H.U Tehran, Iran

References

  • 1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)
  • 2. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature (London) 438, 197 (2005)
  • 3. D.S.L. Abergel, A. Russell, V.I. Fal'ko, Appl. Phys. Lett. 91, 063125 (2007)
  • 4. A.K. Geim, K.S. Novoselov, Nature Mater. 6, 183 (2007)
  • 5. T.W. Odom, J.L. Huang, P. Kim, C.M. Lieber, J. Phys. Chem. B 104, 2794 (2000)
  • 6. S. Reich, J. Maultzsch, C. Thomsen, P. Ordejon, Phys. Rev. B 66, 035412 (2002)
  • 7. V.N. Popov, L. Henrard, Phys. Rev. B 70, 115407 (2004)
  • 8. B. Partoens, F.M. Peeters, Phys. Rev. B 74, 075404 (2006)
  • 9. B. Partoens, F.M. Peeters, Phys. Rev. B 75, 193402 (2007)
  • 10. P.R. Wallace, Phys. Rev. 71, 622 (1947)
  • 11. R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes, Imperial, London 1998, p. 26
  • 12. M.V. Berry, Proc. R. Soc. Lond. A 392, 45 (1984)
  • 13. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)
  • 14. D. Xiao, M. Chang, Q. Niu, Rev. Mod. Phys. 82, 1959 (2010)
  • 15. Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim, Nature 438, 201 (2005)
  • 16. M. Mecklenburg, B.C. Regan, Phys. Rev. Lett. 106, 116803 (2011)
  • 17. G.W. Semenoff, Phys. Rev. Lett. 53, 2449 (1984)
  • 18. D. Xiao, W. Yao, Q. Niu, Phys. Rev. Lett. 99, 236809 (2007)
  • 19. S.Y. Zhou, G.-H. Gweon, A.V. Fedorov, P.N. First, W.A. de Heer, D.-H. Lee, F. Guinea, A.H.C. Neto, A. Lanzara, Nature Mater. 6, 770 (2007)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv122n1p36kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.