Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 121 | 5-6 | 1242-1245

Article title

Aharonov-Bohm and Relativistic Corbino Effects in Graphene: A Comparative Study of Two Quantum Interference Phenomena

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
This is an analytical study of magnetic fields effects on the conductance, the shot noise power, and the third charge-transfer cumulant for the Aharonov-Bohm rings and the Corbino disks in graphene. The two distinct physical mechanisms lead to very similar magnetotransport behaviors. Differences are unveiled when discussing the third-cumulant dependence on magnetic fields.

Keywords

EN

Contributors

author
  • Instytut Fizyki im. Mariana Smoluchowskiego, Uniwersytet Jagielloński, W.S. Reymonta 4, PL-30-059 Kraków, Poland

References

  • 1. G.W. Semenoff, Phys. Rev. Lett. 53, 2449 (1984)
  • 2. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Y. Zhang, Nature 438, 197 (2005)
  • 3. Yu.V. Nazarov, Ya.M. Blanter, Quantum Transport: Introduction to Nanoscience, Cambridge University Press, Cambridge 2009
  • 4. Y. Imry, R.A. Webb, Sci. Am. 260, 36 (1989)
  • 5. K. Popper, The Logic of Scientific Discovery, Routledge Classics, New York 2002, Appendix V
  • 6. P. Recher, B. Trauzettel, A. Rycerz, Ya.M. Blanter, C.W.J. Beenakker, A.F. Morpurgo, Phys. Rev. B 76, 235404 (2007); M. Zarenia, J.M. Pereira Jr., A. Chaves, F.M. Peeters, G.A. Farias, ibid., 81, 045431 (2010)
  • 7. S. Russo, J.B. Oostinga, D. Wehenkel, H.B. Heersche, S.S. Sobhani, L.M.K. Vandersypen, A.F. Morpurgo, Phys. Rev. B 77, 085413 (2008); C. Stampfer, E. Schurtenberger, F. Molitor, J. Guettinger, T. Ihn, K. Ensslin, Int. J. Mod. Phys. 23, 2647 (2009)
  • 8. A. Rycerz, Acta Phys. Pol. A 115, 322 (2009); J. Wurm, M. Wimmer, H.U. Baranger, K. Richter, Semicond. Sci. Technol. 25, 034003 (2010); J. Schelter, D. Bohr, B. Trauzettel, Phys. Rev. B 81, 195441 (2010)
  • 9. A. Rycerz, Phys. Rev. B 81, 121404(R) (2010)
  • 10. M.I. Katsnelson, Europhys. Lett. 89, 17001 (2010); M.I. Katsnelson, J. Comput. Theor. Nanosci. 8, 912 (2011)
  • 11. B. Reulet, J. Senzier, D.E. Prober, Phys. Rev. Lett. 91, 196601 (2003); Y. Bomze, G. Gershon, D. Shovkun, L.S. Levitov, M. Reznikov, Phys. Rev. Lett. 95, 176601 (2005)
  • 12. C.W.J. Beenakker, Rev. Mod. Phys. 80, 1337 (2008)
  • 13. Yu.V. Nazarov, Phys. Rev. B 47, 2768 (1993)
  • 14. Typically, Γp ≪ 1 as for graphene rings with irregular edges there are only evenascent modes present in each of the ring arms at zero and weak dopings, see Refs. [7, 8]
  • 15. More generally, for centrosymmetric field $B = B(r)ê_z$, the parameter $ϕ= Φ_{12}/Φ_0$ in Eq. (7) is replaced by [10]: $ϕ' ≡ Φ_1/Φ_{AB} + 4π/Φ_0 ∫_{r_1}^{r_2} dr/r ∫_{r_1}^{r} dr'r'B (r)$, where $Φ_1$ is flux through the inner ring ($r<r_1$). In particular, if B(r)=0 for $r>r_1$, the Aharonov-Bohm-like oscillations occur when varying $Φ_1$

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv121n5-6p78kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.