Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 121 | 5-6 | 1222-1224

Article title

Magnetization Reversal in Cobalt Nanocolumn Structures Obtained by Glancing Angle Deposition

Content

Title variants

Languages of publication

EN

Abstracts

EN
An advanced deposition technique known as glancing angle deposition was used to fabricate randomly seeded magnetic cobalt columnar nanostructures. The existence of nanocolumns was confirmed by the cross-section scanning electron microscopy. The evolution in the magnetization reversal mechanism as a function of the film thickness was investigated. The coercivity H_{C} and M_{R}/M_{S} ratio (where M_{R} and M_{S} denote the remanent and saturation magnetization, respectively), derived from the magnetic hysteresis loops, are discussed as a function of the angle between the external magnetic field and the surface normal. The direction of the magnetization easy/hard axis and the columns inclination angle were determined on the basis of the angular dependences of the H_{C} and the M_{R}/M_{S}. A crossover from the coherent rotation, based on the Stoner-Wohlfarth model, to the curling reversal mode was observed.

Keywords

EN

Contributors

author
  • Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland
author
  • University Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
author
  • Nicolaus Copernicus University, J. Gagarina 11, 87-100 Toruń, Poland
author
  • Nicolaus Copernicus University, J. Gagarina 11, 87-100 Toruń, Poland
author
  • Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
author
  • Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland

References

  • 1. M.R. Kupsta, M.T. Taschuk, M.J. Brett, J.C. Sit, IEEE Sensors J. 9, 1979 (2009)
  • 2. R.D. McMichael, C.G. Lee, J.E. Bonevich, P.J. Chen, W. Miller, W.F. Egelhoff, J. Appl. Phys. 88, 3561 (2000)
  • 3. W. Casey Uhlig, Jing Shi, Appl. Phys. Lett. 84, 759 (2004)
  • 4. A.O. Adeyeye, J.A.C. Bland, C. Daboo, D.G. Hasko, H. Ahmed, J. Appl. Phys. 82, 469 (1997)
  • 5. R. Lavin, J.C. Denardin, A.P. Espejo, A. Cortés, H. Gomez, J. Appl. Phys. 107, 09B504 (2010)
  • 6. M.O. Jensen, M.J. Brett, Appl. Phys. A 80, 763 (2005)
  • 7. K. Robbie, G. Beydaghyan, T. Brown, C. Dean, J. Adams, C. Buzea, Rev. Sci. Instrum. 75, 1089 (2004)
  • 8. Ch. Patzig, Ch. Khare, B. Fuhrmann, B. Rauschenbach, Phys. Status Solidi B 247, 1322 (2010)
  • 9. R.N. Tait, T. Smy, M.J. Brett, Thin Solid Films 226, 196 (1993)
  • 10. F. Tang, D.L. Liu, D.X. Ye, Y.P. Zhao, T.M. Lu, G.C. Wang, J. Appl. Phys. 93, 4194 (2003)
  • 11. S. Goolaup, N. Singh, A.O. Adeyeye, V. Ng, M.B.A. Jalil, Eur. Phys. J. B 44, 259 (2005)
  • 12. E.H. Frei, S. Shtrikman, D. Treves, Phys. Rev. 106, 446 (1957)
  • 13. E.C. Stoner, E.P. Wohlfarth, Philos. Trans. R. Soc. Ser. A (London) 240, 599 (1948)
  • 14. A. Aharoni, S. Shtrikman, Phys. Rev. 109, 1522 (1958)
  • 15. S. Goolaup, A.O. Adeyeye, N. Singh, G. Gubbiotti, Phys. Rev. B 75, 144430 (2007)
  • 16. G.C. Han, B.Y. Zong, P. Luo, Y.H. Wu, J. Appl. Phys. 93, 9202 (2003)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv121n5-6p71kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.