Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 121 | 2B | B-101-B-109

Article title

Bayesian Value-at-Risk and Expected Shortfall for a Large Portfolio (Multi- and Univariate Approaches)

Content

Title variants

Languages of publication

EN

Abstracts

EN
Bayesian assessments of value-at-risk and expected shortfall for a given portfolio of dimension n can be based either on the n-variate predictive distribution of future returns of individual assets, or on the univariate model for portfolio volatility. In both cases, the Bayesian VaR and ES fully take into account parameter uncertainty and non-linear relationship between ordinary and logarithmic returns. We use the n-variate type I MSF-SBEKK(1,1) volatility model proposed specially to cope with large n. We compare empirical results obtained using this (more demanding) multivariate approach and the much simpler univariate approach based on modelling volatility of the whole portfolio (of a given structure).

Keywords

EN

Contributors

author
  • Department of Econometrics and Operations Research, Cracow University of Economics, Rakowicka 27, 31-510 Kraków, Poland
author
  • Department of Econometrics and Operations Research, Cracow University of Economics, Rakowicka 27, 31-510 Kraków, Poland

References

  • [1] P. Artzner, F. Delbaen, J.-M. Eber, D. Heath, Mathematical Finance 9, 203 (1999)
  • [2] R. Engle, S. Manganelli, J. Bus. Econ. Stat. 22, 367 (2004)
  • [3] A. McNeil, R. Frey, J. Emp. Finance 7, 271 (2000)
  • [4] Y. Yamai, T. Yoshiba, Monetary Economic Studies 20, 95 (2002)
  • [5] J.W. Taylor, J. Financial Econometrics 6, 231 (2008)
  • [6] L. Bauwens, S. Laurent, J.V.K. Rombouts, J. Appl. Econometrics 21, 79 (2006)
  • [7] R.S. Tsay, Analysis of Financial Time Series ($2^{nd}$ edition), Wiley, New York 2005
  • [8] J. Osiewalski, Przegląd Statystyczny 56, 15 (2009)
  • [9] J. Osiewalski, A. Pajor, Central European J. Economic Modelling Econometrics 1 (2), 179 (2009)
  • [10] A. Pajor, Dynamic Econometric Models 9, 81 (2009)
  • [11] J. Osiewalski, A. Pajor, Central European Journal of Economic Modelling and Econometrics 2 (4), 253 (2010)
  • [12] A. O'Hagan, Bayesian Inference, Edward Arnold, London 1994
  • [13] A. Pajor, Acta Universitatis Lodziensis - Folia Oeconomica 190, 177 (2005)
  • [14] J.A. Lopez, Federal Reserve Bank of San Francisco Economic Review 2, 3 (1999)
  • [15] M. Sarma, S. Thomas, A. Shah, J. Forecasting 22 (4), 337 (2003)
  • [16] T.H. Lee, in: International Encyclopedia of the Social Sciences, 2nd ed., vol. 4, , Ed. W.A. Darity, Macmillan Thomson Gale, Detroit 2008, p. 495
  • [17] D. Zhu, J.W. Galbraith, http:/www.cirano.qc.ca/pdf/publication/2009s-24.pdf
  • [18] R. Kaufmann, P. Patie, Strategic Long-Term Financial Risks - The One-Dimensional Cases, RiskLab Report, ETH Zurich, (2003). Available at http://www.risklab.ch/Papers.html\#SLTFR
  • [19] P. Embrechts, R. Kaufmann, P. Patie, Computational Optimization and Applications 32 (1/2), 61 (2005)

Document Type

Publication order reference

YADDA identifier

bwmeta1.element.bwnjournal-article-appv121n2ba121z2bp20kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.