Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 121 | 1 | 114-118

Article title

The Competing Interactions on a Cayley Tree-Like Lattice: Pentagonal Chandelier

Content

Title variants

Languages of publication

EN

Abstracts

EN
Different types of lattice spin systems with competing interactions have rich and interesting phase diagrams. In this study we present some new results for such systems involving the Ising spin system (i.e. σ = ± 1) using a generalization of the Cayley tree-like lattice approximation. We study the phase diagrams for the Ising model on a Cayley tree-like lattice, a new lattice type called pentagonal chandelier, with competing nearest-neighbor interactions J_1, prolonged next-nearest-neighbor interactions J_{p} and one-level next-nearest-neighbor senary interactions J_{l_1}^{(6)}. The colored phase diagrams contain some multicritical Lifshitz points that are at nonzero temperature and many modulated new phases. We also investigate the variation of the wave vector with temperature in the modulated phase and the Lyapunov exponent associated with the trajectory of the system.

Keywords

EN

Contributors

author
  • Arts and Science Faculty, Department of Mathematics, Harran University, Sanliurfa, 63120, Turkey
  • Department of Computational and Theoretical Sciences, Faculty of Science, IIUM, 25200 Kuantan, Malaysia
author
  • Faculty of Education, Department of Mathematics, Zirve University, Gaziantep, 27260, Turkey
author
  • Arts and Science Faculty, Department of Mathematics, Harran University, Sanliurfa, 63120, Turkey

References

  • 1. J. Vannimenus, Z. Phys. B 43, 141 (1981)
  • 2. M. Mariz, C. Tsalis, A.L. Albuquerque, J. Statist. Phys. 40, 577 (1985)
  • 3. C.R. da Silva, S. Coutinho, Phys. Rev. B 34, 7975 (1986)
  • 4. C.J. Thompson, J. Statist. Phys. 27, 441 (1982)
  • 5. S. Katsura, M. Takizawa, Prog. Theor. Phys. 51, 82 (1974)
  • 6. T. Hasegawa, K. Nemoto, Physica A 387, 1404 (2008)
  • 7. T. Hasegawa, K. Nemoto, Phys. Rev. E 75, 026105 (2007)
  • 8. S. Uguz, H. Akin, Physica A 389, 1839 (2010)
  • 9. H. Akin, S. Uguz, S. Temir, AIP Conf. Proc. 1281, 607 (2010)
  • 10. S. Uguz, H. Akin, Chin. J. Phys. 49, 785 (2011)
  • 11. N.N. Ganikhodjaev, U.A. Rozikov, Math. Phys. Anal. Geom. 12, 141 (2009)
  • 12. J.L. Monroe, J. Statist. Phys. 67, 1185 (1992)
  • 13. J.L. Monroe, Phys. Lett. A 188, 80 (1994)
  • 14. R.J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, London 1982
  • 15. S. Uguz, N. Ganikhodjaev, S. Temir, H. Akin, AIP Conf. Proc. 1281, 2074 (2010)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv121n134kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.