Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2011 | 119 | 5 | 633-636

Article title

Hole Subband Mixing and Polarization of Luminescence from Quantum Dashes: A Simple Model

Content

Title variants

Languages of publication

EN

Abstracts

EN
In this paper, we address the problem of luminescence polarization in the case of nanostructures characterized by an in-plane shape asymmetry. We develop a simple semi-qualitative model revealing the mechanism that accounts for the selective polarization properties of such structures. It shows that they are not a straightforward consequence of the geometry but are related to it via valence subband mixing. Our model allows us to predict the degree of polarization dependence on the in-plane dimensions of investigated structures assuming a predominantly heavy hole character of the valence band states, simplifying the shape of confining potential and neglecting the influence of the out-of-plane dimension. The energy dependence modeling reveals the importance of different excited states in subsequent spectral ranges leading to non-monotonic character of the degree of polarization. The modeling results show good agreement with the experimental data for an ensemble of InAs/InP quantum dashes for a set of realistic parameters with the heavy-light hole states separation being the only adjustable one. All characteristic features are reproduced in the framework of the proposed model and their origin can be well explained and understood. We also make some further predictions about the influence of both the internal characteristics of the nanostructures (e.g. height) and the external conditions (excitation power, temperature) on the overall degree of polarization.

Keywords

EN

Contributors

  • Institute of Physics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
author
  • Institute of Physics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
author
  • Institute of Physics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
author
  • Institute of Physics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Institute of Physics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
author
  • Institute of Physics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

References

  • 1. T. Utzmeier, P.A. Postigo, J. Tamayo, R. Garcia, F. Briones, Appl. Phys. Lett. 69, 2674 (1996)
  • 2. A. Sauerwald, T. Kummell, G. Bacher, A. Somers, R. Schwertberger, J.P. Reithmaier, A. Forchel, Appl. Phys. Lett. 86, 253112 (2005)
  • 3. A. Löffler, J. Reithmaier, A. Forchel, J. Cryst. Growth 286, 6 (2006)
  • 4. W. Rudno-Rudzinski, R. Kudrawiec, P. Podemski, G. Sek, J. Misiewicz, A. Somers, R. Schwertberger, J.P. Reithmaier, A. Forchel, Appl. Phys. Lett. 89, 031908 (2006)
  • 5. S. Hein, V. von Hinten, S. Höfling, A. Forchel, Appl. Phys. Lett. 92, 011120 (2008)
  • 6. G. Sęk, P. Podemski, A. Musiał, J. Misiewicz, S. Hein, S. Höfling, A. Forchel, J. Appl. Phys. 105, 086104 (2009)
  • 7. H. Dery, E. Benisty, A. Epstein, R. Alizon, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, D. Gold, J.P. Reithmaier, A. Forchel, J. Appl. Phys. 95, 6103 (2004)
  • 8. M. Jo, T. Mano, K. Sakoda, Appl. Phys. Express 3, 045502 (2010)
  • 9. J.H. Wei, K.S. Chana, J. Appl. Phys. 97, 123524 (2005)
  • 10. J. Planelles, M. Royo, A. Ballester, M. Pi, Phys. Rev. B 80, 1 (2009)
  • 11. P. Miska, J. Even, C. Platz, B. Salem, T. Benyattou, C. Bru-Chevalier, G. Guillot, G. Bremond, K. Moumanis, F.H. Julien, O. Marty, C. Monat, M. Gendry, J. Appl. Phys. 95, 1074 (2004)
  • 12. J. Andrzejewski, G. Sęk, E. O'Reilly, A. Fiore, J. Misiewicz, J. Appl. Phys. 107, 073509 (2010)
  • 13. A.V. Koudinov, I A. Akimov, Yu.G. Kusrayev, F. Henneberger, Phys. Rev. B 70, R241305 (2004)
  • 14. J.J. Sakurai, Modern Quantum Mechanics, Addison Wesley, Reading (MA) 1994
  • 15. R. Winkler, Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems, Vol. 191 of Springer Tracts in Modern Physics, Springer, Berlin 2003
  • 16. C. Pryor, Phys. Rev. B 57, 7190 (1998)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv119n518kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.