Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2011 | 119 | 4 | 509-513

Article title

Third-Order Susceptibility of Silicon Crystals Measured with Millimeter-Wave Gyrotron

Content

Title variants

Languages of publication

EN

Abstracts

EN
We investigate experimental dependence of the third harmonic generation efficiency in the n-type Si crystals on the geometrical dimensions of the sample, polarization and power of the fundamental wave. The efficiency increases monotonically with the rise of the sample thickness up to a threshold value, and decreases dramatically above the threshold. At shorter propagation distances the generation efficiency could be correctly simulated using the layered medium approximation and the numerically calculated electron drift velocity response to the pumping wave electric field to describe the change of the semiconductor properties under high-power microwave irradiation.

Keywords

EN

Contributors

author
  • Semiconductor Phys. Institute, Center for Physical Sciences and Technology, A. Goštauto 11, LT-01108, Vilnius, Lithuania
  • Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
  • TU Dortmund University, Otto-Hahn-Str. 4, D-44221 Dortmund, Germany
author
  • Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
author
  • Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
  • Association EURATOM-CEA CEA/DSM/IRFM, CEA-Cadarache, F-13108 Saint Paul-les-Durance, France
author
  • Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
author
  • Semiconductor Phys. Institute, Center for Physical Sciences and Technology, A. Goštauto 11, LT-01108, Vilnius, Lithuania
author
  • Semiconductor Phys. Institute, Center for Physical Sciences and Technology, A. Goštauto 11, LT-01108, Vilnius, Lithuania

References

  • 1. J.P. Feve, B. Boulanger, Y. Guillien, Opt. Lett. 25, 1373 (2000)
  • 2. K. Miyata, N. Umemura, K. Kato, Opt. Lett. 34, 500 (2009)
  • 3. F. Gravier, B. Boulanger, Opt. Express 14, 11715 (2006)
  • 4. M. Siegrist, F. Keilmann, C. Nieswand, M. Urban, Infrared Phys. Technol. 36, 407 (1995)
  • 5. F. Keilmann, R. Brazis, H. Barkley, W. Kasparek, M. Thumm, V. Erckmann, Europhys. Lett. 11, 337 (1990)
  • 6. M. Urban, Ph.D. Thesis No. 1492, EPFL, Lausanne 1996
  • 7. N. Blombergen, P.S. Pershan, Phys. Rev. 128, 606 (1962)
  • 8. M. Urban, M.R. Siegrist, L. Asadauskas, R. Raguotis, R. Brazis, Appl. Phys. Lett. 69, 1776 (1996)
  • 9. R. Brazis, R. Raguotis, M.R. Siegrist, J. Appl. Phys. 84, 3474 (1998)
  • 10. C. Jacoboni, P. Lugli, The Monte Carlo Method for Semiconductor Device Simulation, Springer, Wien 1989
  • 11. A. Dargys, J. Kundrotas, Handbook of Physical Properties of Ge, Si, GaAs and InP, Science and Encyclopedia Publ., Vilnius 1994
  • 12. R. Bruneti, C. Jacoboni, T. Nava, L. Reggiani, G. Bosman, R.J.J. Zijlstra, J. Appl. Phys. 52, 6713 (1981)
  • 13. P. Yeh, Optical Waves in Layered Media, Wiley, New York 1988

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv119n409kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.