Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2011 | 119 | 3 | 364-368

Article title

Gas Electronegativity Influence οn Electrical Breakdown Mechanisms

Content

Title variants

Languages of publication

EN

Abstracts

EN
This paper discusses the role of different gas breakdown mechanisms depending on electronegativity of the gas, at low values of pressure and inter-electrode gap. Static (dc) electrical breakdown of electropositive, electronegative and noble gases has been investigated theoretically, experimentally and numerically. In the case when the electron mean free path is comparable with characteristic dimension of the electrode system (inter-electrode distance d), then the breakdown occurs through the Townsend mechanism. In the case when the electron mean free path is much shorter than the characteristic dimension of the electrode system, the breakdown is said to occur through the streamer mechanism. But, between the regions where the breakdown occurs solely by either the Townsend or the streamer mechanism, there is a region where breakdown occurs by the combination of these two mechanisms. The width of this region expressed by the quantity of pd product (product of pressure, p, and inter-electrode distance, d) depends on observed gas tendency to form negative or positive ions (electronegative and noble gases, respectively). The level of the anomalous Paschen effect expression is dependent on whether the observed gas is electronegative or noble. The combined mechanism effects of breakdown and anomalous Paschen effect are quantitatively determined and theoretically explained within this paper.

Keywords

EN

Year

Volume

119

Issue

3

Pages

364-368

Physical description

Dates

published
2011-03
received
2010-02-02
(unknown)
2010-12-14

Contributors

author
  • Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia
  • Faculty of Electrical Engineering, University of Belgrade, Bulevar Kralja Aleksandra 73, 11120 Belgrade, Serbia
author
  • Faculty of Electrical Engineering, University of Belgrade, Bulevar Kralja Aleksandra 73, 11120 Belgrade, Serbia
author
  • Faculty of Electrical Engineering, University of Belgrade, Bulevar Kralja Aleksandra 73, 11120 Belgrade, Serbia
  • Faculty of Electrical Engineering, University of Belgrade, Bulevar Kralja Aleksandra 73, 11120 Belgrade, Serbia

References

  • 1. J.M. Meek, J.D. Crags, Electrical Breakdown of Gases, Wiley, New York 1978
  • 2. A. Von Engel, Ionized Gases, Clarendon Press, Oxford 1965
  • 3. B. Loncar, P. Osmokrovic, A. Vasic, S. Stankovic, IEEE Trans. Plasma Sci. 34, 1561 (2006)
  • 4. P. Osmokrovic, A. Vasic, IEEE Trans. Plasma Sci. 33, 1672 (2005)
  • 5. M.M. Pejovic, C.S. Milosavljevic, IEEE Trans. Plasma Sci. 31, 776 (2003)
  • 6. W.O. Schumann, Elektrische Durchbruchfel-stärke von Gasen, Springer-Verlag, Berlin 1923
  • 7. M.J. Schonhuber, IEEE Trans. Pow. Apparat. Syst. 88, 100 (1969)
  • 8. P. Osmokrovic, IEEE Trans. Plasma Sci. 21, 645 (1993)
  • 9. P. Osmokrovic, IEEE Trans. Pow. Deliv. 4, 2095 (1989)
  • 10. P. Osmokrovic, B. Loncar, R. Sasic, IEEE Trans. Plasma Sci. 33, 1729 (2005)
  • 11. A. Pedersen, IEEE Trans. Electr. Insul. 24, 721 (1989)
  • 12. P. Osmokrovic, N. Kartalovic, IEEE Trans. Power Syst. 12, 1455 (1997)
  • 13. P. Osmokrovic, I. Krivokapic, S. Krstic, IEEE Trans. Dielectr. Electr. Insul. 1, 77 (1994)
  • 14. K.F. Geibig, Ph.D. Thesis, T.U. Karlsruhe, 1982
  • 15. K. Stankovic, M. Vujisic, Nucl. Technol. Radiat. 23, 41 (2008)
  • 16. K. Stankovic, M. Vujisic, E. Dolicanin, Nucl. Technol. Radiat. 24, 132 (2009)
  • 17. K. Stankovic, M. Vujisic, Lj. Delic, Nucl. Technol. Radiat. 25, 46 (2010)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv119n314kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.