Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2010 | 117 | 3 | 512-517

Article title

Fabrication, Structural Characterization and Optical Properties of the Flower-Like ZnO Nanowires

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
Multipod flower-like zinc oxide (ZnO) nanowires have been successfully synthesized on Si(111) substrates using a pulsed laser deposition prepared Zn film as "self-catalyst" by the simple thermal evaporation oxidation of the metallic zinc powder at 850°C without any other catalysts or additives. The pre-deposited Zn films by pulsed laser deposition on the substrates can promote the formation of the ZnO nuclei effectively. Also it can further advance the growth of the flower-like ZnO nanowires accordingly. X-ray diffraction, scanning electron microscope, high-resolution transmission electron microscopy, Fourier transform infrared spectrum, and photoluminescence were used to analyze the structure, morphology, composition and optical properties of the as-synthesized products. The results demonstrate that the nanowires were single crystalline with hexagonal wurzite structure, grown along the [0001] in the c-axis direction. Room temperature photoluminescence spectrum of the ZnO nanowires shows a nearband-edge ultraviolet emission (peak at ≈ 384 nm) and a deep-level green emission (peak at ≈ 513 nm). In addition, the growth mechanism of the flower-like ZnO nanowires is discussed in detail.

Keywords

EN

Contributors

author
  • College of Physics and Electronics, Shandong Normal University, Jinan 250014, P.R. China
author
  • College of Physics and Electronics, Shandong Normal University, Jinan 250014, P.R. China
author
  • College of Physics and Electronics, Shandong Normal University, Jinan 250014, P.R. China
author
  • College of Physics and Electronics, Shandong Normal University, Jinan 250014, P.R. China
author
  • College of Physics and Electronics, Shandong Normal University, Jinan 250014, P.R. China

References

  • 1. J.M. Jang, C.R. Kim, H. Ryu, M. Razeghi, W.G. Jung, J. Alloys Comp. 463, 503 (2008)
  • 2. H. Xue, X.L. Xu, Y. Chen, G.H. Zhang, S.Y. Ma, Appl. Surf. Sci. 255, 1806 (2008)
  • 3. S. Baruah, J. Dutta, J. Cryst. Growth 311, 2459 (2009)
  • 4. L.G. Yu, G.M. Zhang, S.Q. Li, Z.H. Xie, D.Z. Guo, J. Cryst. Growth 299, 184 (2007)
  • 5. D.S. Kim, U. Gösele, M. Zacharias, J. Cryst. Growth 311, 3216 (2009)
  • 6. Z.L. Wang, Mater. Sci. Eng. R 64, 33 (2009)
  • 7. J.S. Lee, M.S. Islam, S. Kim, Nano Lett. 6, 1487 (2006)
  • 8. O. Lupan, G. Chai, L. Chow, Microelectron. J. 38, 1211 (2007)
  • 9. A. Dakhlaoui, M. Jendoubi, L.S. Smiri, A. Kanaev, N. Jouini, J. Cryst. Growth 311, 3989 (2009)
  • 10. S.W. Yoon, J.H. Seo, K.H. Kim, J.P. Ahn, T.Y. Seong, K.B. Lee, H. Kwon, Thin Solid Films 517, 4003 (2009)
  • 11. B. Wen, J.E. Sader, J.J. Boland, Phys. Rev. Lett. 101, 175502 (2008)
  • 12. G. Clavel, N. Pinna, D. Zitoun, Phys. Status Solidi A 204, 118 (2007)
  • 13. S. Deka, P.A. Joy, Solid State Commun. 142, 190 (2007)
  • 14. D. Stichtenoth, C. Ronning, T. Niermann, L. Wischmeier, T. Voss, C.J. Chien, P.C. Chang, Nanotechnology 18, 435701 (2007)
  • 15. J. Bao, M.A. Zimmler, F. Capasso, X. Wang, Z.F. Ren, Nano Lett. 6, 1719 (2006)
  • 16. E. Lai, W. Kim, P.D. Yang, Nano Res. 1, 123 (2008)
  • 17. S.W. Kim, S. Fujita, H.K. Park, B. Yang, H.K. Kim, D.H. Yoon, J. Cryst. Growth 292, 306 (2006)
  • 18. S.K. Mohanta, D.C. Kim, X.H. Zhang, C.B. Soh, A.M. Yong, H.K. Cho, S. Tripathy, J. Cryst. Growth 310, 5312 (2008)
  • 19. S.K. Tzeng, M.H. Hon, I.C. Leu, J. Cryst. Growth 311, 4510 (2009)
  • 20. S.Y. Li, C.Y. Lee, T.Y. Tseng, J. Cryst. Growth 247, 357 (2003)
  • 21. M. Wang, C.H. Ye, Y. Zhang, H.X. Wang, X.Y. Zeng, L.D. Zhang, J. Mater. Sci. Mater. Electron. 19, 211 (2008)
  • 22. Y.W. Song, S. Lee, S.Y. Lee, J. Cryst. Growth 310, 4612 (2008)
  • 23. X.H. Wang, S. Liu, P. Chang, Y. Tang, Phys. Lett. A 372, 2900 (2008)
  • 24. M.S. Mohajerani, M. Mazloumi, A. Lak, A. Kajbafvala, S. Zanganeh, S.K. Sadrnezhaad, J. Cryst. Growth 310, 3621 (2008)
  • 25. M.T. Htay, Y. Hashimoto, N. Momose, K. Ito, J. Cryst. Growth 311, 4499 (2009)
  • 26. M. Liu, X.Q. Wei, Z.G. Zhang, G. Sun, C.S. Chen, C.S. Xue, H.Z. Zhuang, B.Y. Man, Appl. Surf. Sci. 252, 4321 (2006)
  • 27. X.M. Sun, X. Chen, Y.D. Li, J. Cryst. Growth 244, 218 (2002)
  • 28. S. Rasouli, S.J. Moeen, A.M. Arabi, I. Tehran, Prog. Color Colorants Coat. 2, 45 (2009)
  • 29. A. Matei, I. Cernica, O. Cadar, C. Roman, V. Schiopu, Int. J. Mater. Form. 1, 767 (2008)
  • 30. M. Chang, X.L. Cao, H.B. Zeng, L.D. Zhang, Chem. Phys. Lett. 446, 370 (2007)
  • 31. K.W. Kolasinski, Curr. Opin. Solid State Mater. Sci. 10, 182 (2006)
  • 32. Q. Wan, K. Yu, T.H. Wang, C.L. Lin, Appl. Phys. Lett. 83, 2253 (2003)
  • 33. Y.W. Heo, V. Varadarajan, M. Kaufman, K. Kim, D.P. Norton, F. Ren, P.H. Fleming, Appl. Phys. Lett. 81, 3046 (2002)
  • 34. Y. Dai, Y. Zhang, Z.L. Wang, Solid State Commun. 126, 629 (2003)
  • 35. M. Shiojiri, C. Kaito, J. Cryst. Growth 52, 173 (1981)
  • 36. J. Xie, P. Li, Y.T. Li, Y.J. Wang, Y. Wei, Mater. Chem. Phys. 114, 943 (2009)
  • 37. B.M. Wen, Y.Z. Huang, J.J. Boland, J. Phys. Chem. C 112, 106 (2008)
  • 38. H. Iwanaga, M. Fujii, S. Takeuchi, J. Cryst. Growth 134, 275 (1993)
  • 39. Q.J. Yu, W.Y. Fu, C.L. Yu, H.B. Yang, R.H. Wei, M.H. Li, S.K. Liu, Y.M. Sui, Z.L. Liu, M.X. Yuan, G.T. Zou, J. Phys. Chem. C 111, 17521 (2007)
  • 40. D.M. Bagnall, Y.F. Chen, M.Y. Shen, Z. Zhu, T. Goto, T. Yao, J. Cryst. Growth 185, 605 (1998)
  • 41. K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, J. Appl. Phys. 79, 7983 (1996)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv117n316kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.