Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2009 | 115 | 1 | 413-417

Article title

Magnetic Heating by Tunable Arrays of Nanoparticles in Cancer Therapy

Content

Title variants

Languages of publication

EN

Abstracts

EN
Detailed knowledge about the temperature distribution achieved in the target area is essential for the development of magnetic hyperthermia treatments. However, the temperature inhomogeneity was found in all local hyperthermia studies. As a consequence of the impossibility of guaranteeing the temperature and thus the thermal dose distribution, hyperthermia is never applied as a single treatment modality. We suggest a model that enables the calculations and optimization of the spatial-time distribution of the temperature in the target volume (i.e. tumor) caused by magnetically heated elements: (i) arrays of clusters of iron oxides magnetite (Fe_3O_4) magnetic nanoparticles, and (ii) arrays of magnetic needles. In order to find the spatial-time temperature distribution in tumor, the bioheat transfer equation is solved for the two above-mentioned arrays of magnetically heated sources embedded in the tumor. The temporal and spatial temperature distributions were calculated with regard to the effect of blood perfusion in the tumor. It is shown that a matrix of magnetic micro-needles injected in the tumor could provide rather uniform tumor heating with the center-edge temperature difference smaller than 3°C at any times during the magnetic hyperthermia treatments. The temperature profiles can be suitably adjusted by a proper choice of the magnetic nanoparticles arrangement.

Keywords

Contributors

author
  • Departamento de Fisica, Universidad Publica de Navarra, 31006, Pamplona, Spain
  • Institute of Experimental Physics, University of Białystok, Lipowa 41, 15-424 Białystok, Poland
author
  • Institute of Pharmacology of Natural Products & Clinical Pharmacology, University of Ulm, Helmholtzstr. 20, D-89081 Ulm, Germany
  • Departamento de Fisica, Universidad Publica de Navarra, 31006, Pamplona, Spain

References

  • 1. R. Hergt, W. Andra, C.G. d'Ambly, I. Hilger, W.A. Kaiser, U. Richter, H.-G. Schmidt, IEEE Trans. Magn. 34, 3745 (1998)
  • 2. R. Hergt, S. Dutz, J. Magn. Magn. Mater. 311, 187 (2007)
  • 3. A. Jordan, R. Scholz, P. Wust, H. Schirra, T. Schiestel, H. Schmidt, R. Felix, J. Magn. Magn. Mater. 194, 185 (1999)
  • 4. J.J.W. Lagendijk, Phys. Med. Biol. 45, R61 (2000)
  • 5. Q.A. Pankhurst, J. Connolly, S.K. Jones, J. Dobson, J. Phys. D, Appl. Phys. 36, R167 (2003)
  • 6. R.E. Rosensweig, J. Magn. Magn. Mater. 252, 370 (2002)
  • 7. I. Baker, Q. Zeng, W. Li, C.R. Sullivan, J. Appl. Phys. 99, 08H106 (2006)
  • 8. S. Maenosono, S. Saita, IEEE Trans. Magn. 42, 1638 (2006)
  • 9. R. Hergt, S. Dutz, R. Muller, M. Zeisberger, J. Phys., Condens. Matter 18, S2919 (2006)
  • 10. M. Veverka, P. Veverka, O. Kaman, A. Lancok, K. Zaveta, E. Pollert, K. Knizek, J. Bohacek, M. Benes, P. Kaspar, E. Duguetand, S. Vasseur, Nanotechnology 18, 345704 (2007)
  • 11. Y.G. Lv, Z-S. Deng, J. Liu, IEEE Trans. Nanobiosci. 4, 284 (2005)
  • 12. W. Andra, C.G. d'Ambly, R. Hergt, I. Hilger, W.A. Kaiser, J. Magn. Magn. Mater. 194, 197 (1999)
  • 13. Y. Rabin, Int. J. Hyperthermia 18, 194 (2002)
  • 14. R. Xu, Y. Zhang, M. Ma, J. Xia, J. Liu, N. Gu, IEEE Trans. Magn. 43, 1078 (2007)
  • 15. O. Brunke, S. Odenbach, C. Fritsche, I. Hilger, W.A. Kaiser, J. Magn. Magn. Mater. 289, 428 (2005)
  • 16. H.H. Pennes, J. Appl. Physiol. 1, 93 (1948)
  • 17. A.C. Guyton, J.E. Hall, Ph.D. Textbook of Medical Physiology, 10th ed., W.B. Saunders Company, A Harcourt Health Company, Philadelphia 2000, p. 25
  • 18. F. Clifton, Chest 111, 1710 (1997)
  • 19. J.-P. Fortin, F. Gazeau, C. Wilhelm, Eur. Biophys. J. 37, 223 (2007)
  • 20. A. Wijaya, K.A. Brown, J.D. Alper, K. Hamad-Schifferli, J. Magn. Magn. Mater. 309, 15 (2007)
  • 21. M. Soehle, M. Czosnyka, J.D. Pickard, P.J. Kirkpatrick, Stroke 35, 1393 (2004)
  • 22. R. Aaslid, S.R. Lash, G.H. Bardy, W.H. Gild, D.W. Newell, Stroke 34, 1645 (2003)
  • 23. E. Ponder, J. General Physiol. 45, 545 (1962)
  • 24. F. Matsuoka, M. Shinkai, H. Honda, T. Kubo, T. Sugita, T. Kobayashi, BioMagnetic Res. Technol. 2, 1 (2004)
  • 25. K. Tanaka, T. Ito, T. Kobayashi, T. Kawamura, S. Shimada, K. Matsumoto, T. Saida, H. Honda, J. Biosci. Bioeng. 100, 112 (2005)
  • 26. S.R. Upreti, A.A. Jeje, Chem. Eng. Sci. 59, 4415 (2004)
  • 27. A. Ito, K. Tanaka, K. Kondo, M. Shinkai, H. Honda, K. Matsumoto, T. Saida, T. Kobayashi, Cancer Sci. 93, 308 (2003)
  • 28. N. Wieringenyz, A.N. Kottey, G.M.J. Leeuweny, J.J.W. Lagendijky, J.D.P. Dijkx, G.J. Nieuwenhuys, Phys. Med. Biol. 43, 121 (1998)
  • 29. A.N. Tichonov, A.A. Samarskii, Equations of Mathematical Physics, Nauka, Moscow 1977

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv115n1121kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.