Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2009 | 115 | 1 | 64-68

Article title

The Overlapping Muffin-Tin Approximation

Content

Title variants

Languages of publication

EN

Abstracts

EN
We present the formalism and demonstrate the use of the overlapping muffin-tin approximation. This fits a full potential to a superposition of spherically symmetric short-ranged potential wells plus a constant. For one-electron potentials of this form, the standard multiple-scattering methods can solve Schrödingers' equation correctly to 1st order in the potential overlap. Choosing an augmented-plane-wave method as the source of the full potential, we illustrate the procedure for diamond-structured Si. First, we compare the potential in the Si-centered overlapping muffin-tin approximation with the full potential, and then compare the corresponding overlapping muffin-tin approximation N-th order muffin-tin orbital and full-potential linear augmented plane wave band structures. We find that the two latter agree qualitatively for a wide range of overlaps and that the valence bands have a root mean squared deviation of 20 meV/electron for 30% radial overlap. Smaller overlaps give worse potentials and larger overlaps give larger 2nd-order errors of the multiple-scattering method. To further remove the mean error of the bands for small overlaps is simple.

Keywords

EN

Contributors

author
  • Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland
  • Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
author
  • Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany

References

  • 1. O.K. Andersen, Phys. Rev. B 12, 3060 (1975); D. Glötzel, B. Segall, O.K. Andersen, Solid State Commun. 36, 403 (1980)
  • 2. H.L. Skriver, The LMTO Method: Muffin-Tin Orbitals and Electronic Structure, Springer-Verlag, Berlin 1984
  • 3. O.K. Andersen, O. Jepsen, Phys. Rev. Lett. 53, 2571 (1984); O.K. Andersen, O. Jepsen, D. Glötzel, in: Highlights of Condensed Matter Theory, Int. School of Physics 'Enrico Fermi', Varenna (Italy), Eds. F. Bassani, F. Fumi, M.P. Tosi, North-Holland, Amsterdam 1985, p. 59
  • 4. I. Turek, V. Drchal, J. Kudrnovsky, M. Sob, P. Weinberger, Electronic Structure of Disordered Alloys, Surfaces, and Interfaces, Kluwer Academic Publ., Boston 1996
  • 5. D.J. Singh, Plane Waves, Pseudopotentials and the LAPW Method, Kluwer Academic Publ., Dordrecht 1994
  • 6. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)
  • 7. M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, J.D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992)
  • 8. O.K. Andersen, A.V. Postnikov, S.Yu. Savrasov, in: Applications of Multiple Scattering Theory to Materials Science, Eds. W.H. Butler, P.H. Dederichs, A. Gonis, R.L. Weaver, MRS Symp. Proc. 253, 37 (1992)
  • 9. J. Korringa, Phys. 13, 392 (1947); W. Kohn, J. Rostoker, Phys. Rev. 94, 1111 (1954)
  • 10. O.K. Andersen, O. Jepsen, G. Krier, in: Lectures in Methods of Electronic Structure Calculations, Eds. V. Kumar, O.K. Andersen, A. Mookerjee, World Sci. Publ. Co., Singapore 1994, p. 63
  • 11. O.K. Andersen, C. Arcangeli, R.W. Tank, T. Saha-Dasgupta, G. Krier, O. Jepsen, I. Dasgupta, in: Tight-Binding Approach to Computational Materials Science, Eds. L. Colombo, A. Gonis, P. Turchi, MRS Symp. Proc. 491, 3 (1998)
  • 12. R.W. Tank, C. Arcangeli, Phys. Status Solidi B 217, 89 (2000)
  • 13. O.K. Andersen, D. Savrasov, unpublished results
  • 14. L. Vitos, Phys. Rev. B 64, 014107 (2001), and Computational Quantum Mechanics for Materials Engineers: the EMTO Method and Applications, Springer, Berlin 2008
  • 15. O.K. Andersen, T. Saha-Dasgupta, R.W. Tank, C. Arcangeli, O. Jepsen, G. Krier, in: Electronic Structure and Physical Properties of Solids. The Uses of the LMTO Method, Ed. H. Dreyssé, Springer Lecture Notes in Physics., Vol. 535, Springer, Berlin 2000, p. 3; O.K. Andersen, T. Saha-Dasgupta, Phys. Rev. B 62, R16219 (2000)
  • 16. P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, Karlheinz Schwarz, Techn. Universität Wien, Austria 2001

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv115n1010kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.