Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2008 | 114 | 5 | 1101-1107

Article title

Spatially Resolved X-ray Diffraction Technique for Crystallographic Quality Inspection of Semiconductor Microstructures

Content

Title variants

Languages of publication

EN

Abstracts

EN
Spatially resolved X-ray diffraction is introduced and applied for micro-imaging of strain in GaAs and GaSb layers grown by epitaxial lateral overgrowth on GaAs substrates. We show that laterally overgrown parts of the layers (wings) are tilted towards the underlying mask. By spatially resolved X-ray diffraction mapping the direction of the tilt and distribution of tilt magnitude across the width of each layer can be readily determined. This allows measuring of the shape of the lattice planes in individual epitaxial stripes. In GaSb/GaAs heteroepitaxial laterally overgrown layers local mosaicity in the wing area was found. By spatially resolved X-ray diffraction the size of microblocks and their relative misorientation were analyzed. Finally, microscopic curvature of lattice planes confined between two neighboring slip bands in thermally strained Si wafers is measured. All these examples show advantages of spatially resolved X-ray diffraction over a standard X-ray diffraction when applied for analysis of crystalline microstructures.

Keywords

EN

Contributors

author
  • Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw, Poland
author
  • Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw, Poland
author
  • Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw, Poland

References

  • 1. D. Lubbert, T. Baumbach, J. Hartwig, E. Boller, E. Pernot, Nucl. Instrum. Methods Phys. Res. B 160, 521 (2000)
  • 2. Z.R. Zytkiewicz, J. Domagala, D. Dobosz, J. Bak-Misiuk, J. Appl. Phys. 86, 1965 (1999)
  • 3. J.Z. Domagala, A. Czyzak, Z.R. Zytkiewicz, Appl. Phys. Lett. 90, 241904 (2007)
  • 4. A. Czyzak, J.Z. Domagala, G. Maciejewski, Z.R. Zytkiewicz, Appl. Phys. A 91, 601 (2008)
  • 5. Z.R. Zytkiewicz, Cryst. Res. Technol. 34, 573 (1999)
  • 6. H. Raidt, R. Kohler, F. Banhart, B. Jenichen, A. Gutjahr, M. Konuma, I. Silier, E. Bauser, J. Appl. Phys. 80, 4101 (1996)
  • 7. P. Fini, H. Marchand, J.P. Ibbetson, S.P. DenBaars, U.K. Mishra, J.S. Speck, J. Cryst. Growth 209, 581 (2000)
  • 8. I.H. Kim, C. Sone, O.H. Nam, Y.J. Park, T. Kim, Appl. Phys. Lett. 75, 4109 (1999)
  • 9. A. Czyzak, J.Z. Domagala, Z.R. Zytkiewicz, Appl. Phys. A 91, 609 (2008)
  • 10. Z.R. Zytkiewicz, Thin Solid Films 412, 64 (2002)
  • 11. P. Fini, A. Munkholm, C. Thompson, G.B. Stephenson, J.A. Eastman, M.V. Ramana Murty, O. Auciello, L. Zhao, S.P. DenBaars, J.S. Speck, Appl. Phys. Lett. 76, 3893 (2000)
  • 12. J.M. Yi, Y.S. Chu, T.S. Argunova, J.Z. Domagala, J.H. Je, J. Synchrotron Rad. 15, 96 (2008)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv114n516kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.