Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2008 | 113 | 4 | 1255-1265

Article title

Properties of Neutron Doped Multicrystalline Silicon for Solar Cells

Content

Title variants

Languages of publication

EN

Abstracts

EN
The technology of neutron transmutation doping of silicon wafers in MARIA nuclear research reactor is described. The studies of the radiation defects performed with positron annihilation confirmed that divacancies dominate in the irradiated material. Thermal treatment of irradiated silicon at 700-1000°C produces void-phosphorus complexes and void aggregates. The resistivity of the samples produced by neutron transmutation doping was found to be uniform within 2.5% limits. The severe reduction of the minority carrier lifetime in irradiated samples was confirmed.

Keywords

Contributors

  • Institute of Atomic Energy, Świerk, 05-400 Otwock, Poland
author
  • Institute of Atomic Energy, Świerk, 05-400 Otwock, Poland
author
  • Institute of Atomic Energy, Świerk, 05-400 Otwock, Poland
  • Institute of Atomic Energy, Świerk, 05-400 Otwock, Poland
author
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25 30-059 Cracow, Poland
author
  • Institute of Electron Technology, Warsaw, Poland
author
  • University of Silesia, Bankowa 12, 40-007 Katowice, Poland

References

  • 1. L.J. Geerlings, P. Manshanden, G.P. Wyers, E.J.O vrelid, O.S. Raaness, A.N. Waernes, B. Wiersma, in: Proc. 20th European PV Solar Energy Conf. and Exhibition, Barcelona (Spain) 2005, Eds. W. Paltz, H. Ossenbrink, P. Helm, Barcelona 2005, p. 619
  • 2. D. Sarti, R. Einhaus, Solar Energy Mater. Solar Cells 72, 27 (2002)
  • 3. A. Cuevas, Mater. Forum 27, 1 (2004)
  • 4. W.R. Runyan, Silicon Semiconductor Technology, McGraw-Hill Book Company, New York 1965
  • 5. N.W. Crick, H. Blowfield, in: Silicon Transmutation Doping Techniques and Practice, IAEA-TECDOC-456, IAEA, Vienna 1988, p. 65
  • 6. J. Kansy, Nucl. Instrum. Methods Phys. Res. A 374, 235 (1996)
  • 7. W. Brandt, R. Paulin, Phys. Rev. B 5, 2430 (1972)
  • 8. R. Krause-Rehberg, H.S. Leipner, Positron Annihilation in Semiconductors, Defect Studies, Springer Series in Solid State Science, Springer, Berlin 1999
  • 9. X.T. Meng, A.K. Liolios, M. Chardalas, Sp. Dedoussis, C.A. Eleftheriadis, Stef. Charalambous, Phys. Lett. A 157, 73 (1991)
  • 10. W. Puff, X.T. Meng, J. Appl. Phys. 73, 648 (1993)
  • 11. M. Coeck, N. Balcaen, T. Van Hoecke, B. Van Waeyenberge, D. Segers, C. Dauwe, C. Laermans, J. Appl. Phys. 87, 3674 (2000)
  • 12. M. Hasegawa, T. Chiba, A. Kawasuso, T. Akahane, M. Suezawa, S. Yamaguchi, K. Sumino, Mater. Sci. Forum 196-201, 1481 (1995)
  • 13. A. Kawasuso, M. Hasegawa, M. Suezawa, S. Yamaguchi, K. Sumino, Hyperfine Interact. 84, 397 (1994)
  • 14. A. Polity, F. Börner, S. Huth, S. Eichler, R. Krause-Rehberg, Phys. Rev. B 58, 10363 (1998)
  • 15. R. Krause-Rehberg, G. Dlubek, A. Polity, Mater. Sci. Forum 196-201, 1649 (1995)
  • 16. A. Kawasuso, M. Hasegawa, M. Suezawa, S. Yamaguchi, K. Sumino, Jpn. J. Appl. Phys. Pt. 1 34, 2197 (1995)
  • 17. M. Eldrup, D. Lightbody, J.N. Sherwood, Chem. Phys. 63, 51 (1981)
  • 18. S. Sikorski, T. Piotrowski, Progr. Quant. Electron. 27, 295 (2003)
  • 19. G.C. Messenger, M.S. Ash, The Effects of Radiation on Electronic Systems, Van Nostrand Reinhold, New York 1992
  • 20. G.C. Messenger, IEEE Trans. Nucl. Sci. 39, 468 (1992)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv113n417kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.