Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2006 | 110 | 6 | 833-843

Article title

The Structure of Dendrimers with Charged Terminal Groups: Monte Carlo Simulations

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
Taking into account the full Coulomb potential and the excluded volume interactions, properties of dendrimers with generations g = 5, 6 with charged terminal groups and counterions in an athermal solvent are examined by lattice Monte Carlo simulations. The study treats counterions explicitly and focuses on the local structure of the systems inspected by pair correlation functions g_{ab} that provide information on distributions of monomers, terminal groups and ions in space at various temperatures T*. Special emphasis is placed on counterions and their role they play in causing conformational changes of the molecules. The simulations show that counterions penetrate the interior of the dendrimers, and there is a major increase in their concentration there as T* decreases. Some of them condense onto the terminal groups and a reduction in the mean effective charge ⟨Q⟩ of the dendrimers appears. Within the range of temperatures where the condensation (as a function of T*) is sharp the molecules weakly swell up when compared to their size at the other temperatures. This kind of behaviour is also reflected by the distributions of monomers and terminal groups.

Keywords

EN

Year

Volume

110

Issue

6

Pages

833-843

Physical description

Dates

published
2006-12
received
2006-07-28

Contributors

author
  • Max-Planck-Institute for Polymer Research, Postfach 3148, 55021 Mainz, Germany
author
  • Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
  • Leibniz Institute for Polymer Research Dresden e.V., 01069 Dresden, Germany

References

  • 1. D.A. Tomalia, H. Baker, J. R. Dewald, M. Hall, G. Kallos, S. Martin, J. Roeck, J. Ryder, P. Smith, Polym. J., 17, 117, 1985
  • 2. E.W. Buhleier, W. Wehner, F. Vogtle, Synthesis, 1978, 155, 1978
  • 3. www.azonano.com/details.asp?ArticleID=1142_(Organic_ line Nanoparticles)
  • 4. C.F. Welch, D.A. Hoagland, Langmuir, 19, 1082, 2003
  • 5. G. Nisato, R. Ivkov, E.J. Amis, Macromolecules, 33, 4172, 2000
  • 6. K.M.A. Rahman, C.J. Durning, N.J. Turro, D.A. Tomalia, Langmuir, 16, 10154, 2000
  • 7. X. Li, T. Imae, D. Leisner, M.A. López-Quintela, J. Phys. Chem. B, 106, 12170, 2002
  • 8. H. Zhang, P.L. Dubin, J. Ray, G.S. Manning, C.N. Moorefield, G.R. Newkome, J. Phys. Chem. B, 103, 2347, 1999
  • 9. D. Leisner, T. Imae, J. Phys. Chem. B, 108, 1798, 2004
  • 10. E.G. Timoshenko, Y.A. Kuznetsov, R. Connolly, J. Chem. Phys., 117, 9050, 2002
  • 11. E.N. Govorun, K.B. Zeldovich, A.R. Khokhlov, Macromol. Theory Simul., 12, 705, 2003
  • 12. P. Welch, M. Muthukumar, Macromolecules, 31, 5892, 1998
  • 13. P. Welch, M. Muthukumar, Macromolecules, 33, 6159, 2000
  • 14. S.V. Lyulin, A.A. Darinskii, A.V. Lyulin, M.A. Michels, Macromolecules, 37, 4676, 2004
  • 15. B. Dunweg, M. Stevens, K. Kremer, in: Monte Carlo and Molecular Dynamics Simulations in Polymer Science, Ed. K. Binder, Oxford University Press, New York 1999, p. 125
  • 16. H. Schiessel, P. Pincus, Macromolecules, 31, 7953, 1998
  • 17. G.S. Manning, J. Chem. Phys., 51, 924, 1969
  • 18. G.S. Manning, J. Chem. Phys., 51, 934, 1969
  • 19. G.S. Manning, J. Chem. Phys., 51, 3249, 1969
  • 20. G.S. Manning, J. Chem. Phys., 89, 3773, 1988
  • 21. M.J. Stevens, K. Kremer, J. Chem. Phys., 103, 1669, 1995
  • 22. J. Takashima, M. Takasu, Y. Hiwatari, Phys. Rev. A, 40, 2706, 1989
  • 23. R.G. Winkler, M. Gold, P. Reineker, Phys. Rev. Lett., 80, 3731, 1998
  • 24. N.V. Brilliantov, D.V. Kuznetsov, R. Klein, Phys. Rev. Lett., 81, 1433, 1998
  • 25. J.M. Victor, J.P. Hansen, Europhys. Lett., 3, 1161, 1987
  • 26. J.P. Donley, J. Chem. Phys., 116, 5315, 2002
  • 27. M. Deserno, C. Holm, S. May, Macromolecules, 33, 199, 2000
  • 28. A.V. Dobrynin, M. Rubinstein, Macromolecules, 34, 1964, 2001
  • 29. H.J. Limbach, C. Holm, J. Chem. Phys., 114, 9674, 2001
  • 30. M.J. Stevens, S. Plimpton, Eur. Phys. J. B, 2, 341, 1998
  • 31. R. Chang, A. Yethiraj, J. Chem. Phys., 118, 6634, 2003
  • 32. T. Hofmann, R.G. Winkler, P. Reineker, J. Chem. Phys., 114, 10181, 2001
  • 33. M. Muthukumar, J. Chem. Phys., 120, 9343, 2004
  • 34. S. Liu, M. Muthukumar, J. Chem. Phys., 116, 9975, 2002
  • 35. M. Majtyka, J. Klos, J. Phys., Condens. Matter, 18, 3581, 2006
  • 36. A.A. Gurtovenko, S.V. Lyulin, M. Karttunen, L. Vattulainen, J. Chem. Phys., 124, 094904, 2006 and references therein
  • 37. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford 1984
  • 38. N. Meropolis, A.W. Rosenbluth, N.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys., 21, 1087, 1953
  • 39. R.L. Lescanec, M. Muthukumar, Macromolecules, 24, 4892, 1991
  • 40. S. Rathgeber, T. Pakula, V. Urban, J. Chem. Phys., 121, 3840, 2004
  • 41. D. Boris, M. Rubinstein, Macromolecules, 29, 7251, 1996
  • 42. V. Lyulin, G.R. Davies, D.B. Adolf, Macromolecules, 33, 6899, 2000
  • 43. K. Karatasos, D.B. Adolf, G.R. Davies, J. Chem. Phys., 115, 5310, 2001
  • 44. M.L. Mansfield, L.I. Klushin, Macromolecules, 26, 4262, 1993
  • 45. M.F. Ottaviani, F. Montalti, N.J. Turro, D.A. Tomalia, J. Phys. Chem. B, 101, 158, 1997
  • 46. F. Grohn, B.J. Bauer, Y.A. Akpalu, C.L. Jackson, E.J. Amis, Macromolecules, 33, 6042, 2000
  • 47. F. Grohn, G. Kim, B.J. Bauer, E.J. Amis, Macromolecules, 34, 2179, 2001
  • 48. K. Vassilev, W.T. Ford, J. Polym. Sci. A, 37, 2727, 1999
  • 49. K. Esumi, A. Suzuki, N. Aihara, K. Usui, K. Torigoe, Langmuir, 14, 3157, 1998

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv110n608kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.