Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2005 | 108 | 4 | 541-554

Article title

Application of Kelvin Probe Microscopy for Nitride Heterostructures

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
Kelvin probe microscopy is an experimental technique designed to investigate fluctuations of surface potential (work function per electron) related to distribution of electric charge or variations in composition. The paper describes principle and precision of measurements. The results obtained for group-III nitrides semiconductor heterostructures grown on c-plane sapphire by metal-organic vapour phase epitaxy are presented. The observations concerns defects: inversion domains for Ga- and N-polar layers, threading dislocations and effects of spontaneous polarization leading to 2D carrier gas. To achieve insight in the evolution of defects, bevelled and cross-sectioned samples were investigated along with surface of "as grown" layers. Applicability of standard Kelvin probe microscopy method was also extended by investigating dependence of the surface potential on variable wavelength illumination, offering opportunity for spectroscopy of individual defects.

Keywords

EN

Contributors

author
  • Institute of Experimental Physics, Warsaw University, Hoża 69, 00-681 Warsaw, Poland

References

  • 1. G. Binning, H. Rohrer, Ch. Gerber, E. Weibel, Phys. Rev. Lett., 49, 57, 1982
  • 2. G. Binning, C.F. Quate, Ch. Gerber, Phys. Rev. Lett., 56, 930, 1986
  • 3. Y. Martin, H.K. Wickramasinghe, Appl. Phys. Lett., 50, 1455, 1987
  • 4. Y. Martin, D.W. Abraham, H.K. Wickramasinghe, Appl. Phys. Lett., 52, 1103, 1988
  • 5. M. Nonnenmacher, M.P. O'Boyle, H.K. Wickramasinghe, Appl. Phys. Lett., 58, 2921, 1991
  • 6. Electric Techniques on MultiMode™ Systems, Support Note, 231, Rev. E, Digital Instruments Veeco Metrology Group, 2001
  • 7. H.O. Jacobs, P. Leuchtman, O.J. Homan, A. Stemmer, J. Appl. Phys., 84, 1168, 1998
  • 8. L. Kronik, Y. Shapira, Surf. Sci. Rep., 37, 1, 1999
  • 9. F. Bernardini, V. Fiorentini, D. Vanderbilt, Phys. Rev. B, 56, R10024, 1997
  • 10. F. Bernardini, V. Fiorentini, Phys. Rev. B, 64, 085207, 2001
  • 11. M. Sumiya, S. Fuke, MRS Internet J. Nitride Semicond. Res., 91, 2004
  • 12. J.L. Weyher, S. Muller, I. Grzegory, S. Porowski, J. Cryst. Growth, 182, 17, 1997
  • 13. P.M. Bridger, Z.Z. Bandić, E.C. Piquette, T.C. McGill, Appl. Phys. Lett., 74, 3522, 1999
  • 14. J.W.P. Hsu, D.V. Lang, S. Richter, R.N. Kleinman, A.M. Sergent, R.J. Molnar, Appl. Phys. Lett., 77, 2873, 2000
  • 15. G. Koley, M. Spencer, J. Appl. Phys., 90, 337, 2001
  • 16. B.S. Simpkins, D.M. Schaadt, E.T. Yu, R.J. Molnar, J. Appl. Phys., 91, 9924, 2002
  • 17. K.M. Jones, P. Visconti, F. Yun, A.A. Baski, H. Morkoc, Appl. Phys. Lett., 78, 2497, 2001
  • 18. J.W.P. Hsu, H.M. Ng, A.M. Sergent, S.N.G. Chu, Appl. Phys. Lett., 81, 3579, 2002
  • 19. A. Krtschil, A. Dadgar, A. Krost, J. Cryst. Growth, 248, 542, 2003
  • 20. G. Koley, M.G. Spencer, Appl. Phys. Lett., 78, 2873, 2001
  • 21. R. Bozek, K. Pakula, J.M. Baranowski, Phys. Status Solidi C, 1, 364, 2004
  • 22. L.T. Romano, J.E. Northrup, M.A. O'Keefe, Appl. Phys. Lett., 69, 2394, 1996
  • 23. P.J. Schuck, M.D. Mason, R.D. Grober, O. Ambacher, A.P. Lima, C. Miskys, R. Dimitrov, M. Stutzmann, Appl. Phys. Lett., 79, 952, 2001
  • 24. V. Fiorentini, Appl. Phys. Lett., 82, 1182, 2003
  • 25. O. Ambacher, J. Smart, J.R. Shealy, N.G. Weimann, K. Chu, M. Murphy, W.J. Schaff, L.F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, J. Hilsenbeck, J. Appl. Phys., 85, 3222, 1999

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv108n402kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.