Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 133 | 1 | 206-209

Article title

Spatially Anisotropic Spin J₁-J₂ Heisenberg Model for an Antiferromagnetic Square Lattice: Phase Diagrams

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
The new magnetic materials such as the layered oxide high-temperature superconductor can be well described by the Heisenberg spin model with nearest-neighbor coupling J₁ and next-nearest-neighbor coupling J₂. A generalization of the J₁-J₂ model is the J₁^{x}-J₁^{y}-J₂ model where the nearest-neighbor bonds have different strengths J₁^{x} and J₁^{y} in the x and y directions, respectively. The effect of the couplings J₂ and J₁^{y} on the antiferromagnetic Néel state is investigated within the quantum many-body Green function method.

Keywords

Contributors

author
  • Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna, Moscow region, Russia
  • Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovak Republic

References

  • [1] R. Ewings, T. Perring, R. Bewley, T. Guidi, M. Pitcher, D.R. Parker, S.J. Clarke, A.T. Boothroyd, Phys. Rev. B 78, 220501(R) (2008), doi: 10.1103/PhysRevB.78.220501
  • [2] O.A. Starykh, L. Balents, Phys. Rev. Lett. 93, 127202 (2004), doi: 10.1103/PhysRevLett.93.127202
  • [3] A.A. Nersesyan, A.M. Tsvelik, Phys. Rev. B 67, 024422 (2003), doi: 10.1103/PhysRevB.67.024422
  • [4] H.T. Diep, Frustrated Spin Systems, World Sci., Singapore 2004
  • [5] S. Sachdev, Quantum Phase Transitions, Cambridge University Press, Cambridge 2001
  • [6] K. Majumdar, Phys. Rev. B 82, 144407 (2010), doi: 10.1103/PhysRevB.82.144407
  • [7] J. Zhao, D.T. Adroja, D-X. Yao, R. Bewley, S. Li, X.F. Wang, G. Wu, X.H. Chen, J. Hu, P. Dai, Nature Phys. 5, 555 (2009), doi: 10.1038/nphys1336
  • [8] A.A. Vladimirov, D. Ihle, N.M. Plakida, Theor. Math. Phys. 177, 1540 (2013)
  • [9] S.V. Tyablikov, Methods in the Quantum Theory of Magnetism, Nauka, Moscow 1965 (in Russian); English transl. Plenum, New York 1967
  • [10] W. Nolting, Quantum Theory of Magnetism, Springer-Verlag, Berlin 2009, doi: 10.1007/978-3-540-85416-6
  • [11] P. Fröbrich, P.J. Kuntz, Phys. Rep. 432, 223 (2006), doi: 10.1016/j.physrep.2006.07.002
  • [12] N.M. Mermin, H. Wagner, Phys. Rev. Lett. 17, 1133 (1966), doi: 10.1103/PhysRevLett.17.1133
  • [13] L.W. Harriger, H.Q. Luo, M.S. Liu, C. Frost, J.P. Hu, M.R. Norman, P. Dai, Phys. Rev. B 84, 054544 (2011), doi: 10.1103/PhysRevB.84.054544
  • [14] R.A. Ewings, T.G. Perring, J. Gillett, S.D. Das, S.E. Sebastian, A.E. Taylor, T. Guidi, A.T. Boothroyd, Phys. Rev. B 83, 214519 (2011), doi: 10.1103/PhysRevB.83.214519

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-app133z1p34kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.