Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 133 | 1 | 140-151

Article title

Numerical Simulations of Shock Wave Propagating by a Hybrid Approximation Based on High-Order Finite Difference Schemes

Content

Title variants

Languages of publication

EN

Abstracts

EN
In this paper, we attempt to display effective numerical simulations of shock wave propagating represented by the Burgers equations known as a significant mathematical model for turbulence. A high order hybrid approximation based on seventh order weighted essentially non-oscillatory finite difference together with the sixth order finite difference scheme implemented for spatial discretization is presented and applied without any transformation or linearization to the Burgers equation and its modified form. Then, the produced system of first order ordinary differential equations is solved by the MacCormack method. The efficiency, accuracy and applicability of the proposed technique are analyzed by considering three test problems for several values of viscosity that can be caused by the steep shock behavior. The performance of the method is measured by some error norms. The results are in good agreement with the results reported previously, and moreover, the suggested approximation relatively comes to the forefront in terms of its low cost and easy implementation.

Keywords

Contributors

author
  • Department of Mathematics, Suleyman Demirel University, Isparta, Turkey
author
  • Department of Mathematics, Yildiz Technical University, Istanbul, Turkey
  • Department of Mathematics, Suleyman Demirel University, Isparta, Turkey

References

  • [1] H. Bateman, Mon. Weather Rev. 43, 163 (1915), doi: 10.1175/1520-0493(1915)43<163:SRROTM>2.0.CO;2
  • [2] J.M. Burgers, Verh. Kon. Ned. Akad. Wet. 17, 1 (1939)
  • [3] J.M. Burgers, Adv. Appl. Mech. 1, 171 (1948), doi: 10.1016/S0065-2156(08)70100-5
  • [4] A. Dogan, Appl. Math. Comput. 157, 331 (2004), doi: 10.1016/j.amc.2003.08.037
  • [5] S. Kutluay, A. Esen, I. Dag, J. Comput. Appl. Math. 167, 21 (2004), doi: 10.1016/j.cam.2003.09.043
  • [6] ı. Dag, D. Irk, B. Saka, Appl. Math. Comput. 163, 199 (2005), doi: 10.1016/j.amc.2004.01.028
  • [7] B. Saka, ı. Dag, Chaos Soliton Fract. 32, 1125 (2007), doi: 10.1016/j.chaos.2005.11.037
  • [8] R.C. Mittal, R.K. Jain, Appl. Math. Comput. 218, 7839 (2012), doi: 10.1016/j.amc.2012.01.059
  • [9] S.S. Xie, S. Heo, S. Kim, G. Woo, S. Yi, J. Comput. Appl. Math. 214, 417 (2008), doi: 10.1016/j.cam.2007.03.010
  • [10] A. Korkmaz, ı. Dag, Eng. Comput. 28, 654 (2011), doi: 10.1108/02644401111154619
  • [11] I.A. Hassanien, A.A. Salama, H.A. Hosham, Appl. Math. Comput. 170, 781 (2005), doi: 10.1016/j.amc.2004.12.052
  • [12] W. Liao, Appl. Math. Comput. 206, 755 (2008), doi: 10.1016/j.amc.2008.09.037
  • [13] M. Sari, G. Gürarslan, Appl. Math. Comput. 208, 475 (2009), doi: 10.1016/j.amc.2008.12.012
  • [14] M.A. Ramadan, T.S. El-Danaf, F.E.I. Abd Alaal, Chaos Soliton Fract. 26, 795 (2005), doi: 10.1016/j.chaos.2005.01.054
  • [15] M.A. Ramadan, T.S. El-Danaf, Math. Comput. Simulat. 70, 90 (2005), doi: 10.1016/j.matcom.2005.04.002
  • [16] B. Saka, I. Dag, J. Franklin Inst. 345, 328 (2008), doi: 10.1016/j.jfranklin.2007.10.004
  • [17] Y. Duan, R. Liu, Y. Jiang, Appl. Math. Comput. 202, 489 (2008), doi: 10.1016/j.amc.2008.01.020
  • [18] R.S. Temsah, Commun. Nonlinear Sci. 14, 760 (2009), doi: 10.1016/j.cnsns.2007.11.004
  • [19] D. Irk, Kybernetes 38, 1599 (2009), doi: 10.1108/03684920910991568
  • [20] A.G. Bratsos, in: Proc. HERCMA 2009, 9th Hellenic-European Conf. on Computer Mathematics and Its Applications, Athens 2009
  • [21] A.G. Bratsos, Comput. Math Appl. 60, 1393 (2010), doi: 10.1016/j.camwa.2010.06.021
  • [22] A.G. Bratsos, L.A. Petrakis, Int. J. Numer. Meth. Biomed. Eng. 27, 232 (2011), doi: 10.1002/cnm.1294
  • [23] V. Gupta, M.K. Kadalbajoo, Neural Parallel Sci. Comput. 18, 167 (2010)
  • [24] T. Roshan, K.S. Bhamra, Appl. Math. Comput. 218, 3673 (2011), doi: 10.1016/j.amc.2011.09.010
  • [25] S. Kutluay, Y. Ucar, N.M. Yagmurlu, Bull. Malaysian Math. Soc. 39, 1603 (2016), doi: 10.1007/s40840-015-0262-6
  • [26] Y. Shen, G. Zha, in: 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno (Nevada, USA), AIAA 2008-0757, 2008, doi: 10.2514/6.2008-757
  • [27] Y. Shen, G. Zha, in: 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando (Florida, USA), AIAA 2010-1451, 2010, doi: 10.2514/6.2010-1451
  • [28] D.S. Balsara, C.W. Shu, J. Comput. Phys. 160, 405 (2000), doi: 10.1006/jcph.2000.6443
  • [29] Y.H. Zahran, M.M. Babatin, Appl. Math. Comput. 219, 8198 (2013), doi: 10.1016/j.amc.2013.02.020
  • [30] G.S. Jiang, C.W. Shu, J. Comput. Phys. 126, 202 (1996), doi: 10.1006/jcph.1996.0130
  • [31] Z.J. Wang, R.F. Chen, J. Comput. Phys. 174, 381 (2001), doi: 10.1006/jcph.2001.6918
  • [32] D. Ponziani, S. Prizzoli, F. Grasso, Int. J. Numer. Meth. Fl. 42, 953 (2003), doi: 10.1002/fld.564
  • [33] S. Pirozzoli, J. Comput. Phys. 178, 81 (2002), doi: 10.1006/jcph.2002.7021
  • [34] D. Kim, J.H. Kwon, J. Comput. Phys. 210, 554 (2005), doi: 10.1016/j.jcp.2005.04.023
  • [35] Y.Q. Shen, G.W. Yang, Int. J. Numer. Meth. Fl. 53, 531 (2007), doi: 10.1002/fld.1286
  • [36] M. Sari, G. Gürarslan, A. Zeytinoglu, Numer. Meth. Part. D E 27, 1313 (2011), doi: 10.1002/num.20585
  • [37] A. Zeytinoglu, M.Sc. Thesis, Suleyman Demirel University, Turkey 2010
  • [38] X.D. Liu, S. Osher, T. Chan, J. Comput. Phys. 115, 200 (1994), doi: 10.1006/jcph.1994.1187
  • [39] P. Xie, Ph.D. Thesis, The University of Texas, 2007
  • [40] R.H. Pletcher, J.C. Tannehill, D.A. Anderson, Computational Fluid Mechanics and Fluid Transfer, Taylor and Francis, 2013
  • [41] H. Nguyen, J. Reynen, in: Numerical Methods for Nonlinear Problems, Eds. C. Taylor, E. Hinton, D.R.J. Owen, Pineridge, Swansea 1984, p. 718
  • [42] R.J. LeVeque, Numerical Methods for Conservation Laws, Birkhauser Verlag, 1992, doi: 10.1007/978-3-0348-8629-1
  • [43] M. Landajuela, Burgers Equation, BCAM Internship, 2011
  • [44] S.E. Harris, Eur. J. Appl. Math. 7, 201 (1996), doi: 10.1017/S0956792500002291
  • [45] P.L. Sachdev, C.S. Rao, B.O. Enflo, Stud. Appl. Math. 114, 307 (2005), doi: 10.1111/j.0022-2526.2005.01551.x

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-app133z1p25kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.