Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 3 | 1149-1156

Article title

A Computational Study of the Ozonolysis of Phenanthrene

Content

Title variants

Languages of publication

EN

Abstracts

EN
A computational study of the ozonolysis of phenanthrene has been carried out using DFT methods (B3LYP and M06-2X). The reaction mechanism for the ozonolysis was studied in both gas phase and in solution, using the polarizable continuum solvation model. The structures for all proposed reaction mechanisms were optimized using M06-2X and B3LYP methods with 6-31G(d), 6-31+G(d), and 6-31G(2df,p) basis sets. In solution, all structures were optimized using B3LYP/6-31+G(d,p) and polarizable continuum solvation model. Six different mechanistic pathways were explored for the ozonolysis of phenanthrene that forms aldehyde compounds. The activation energy of the formation of the primary ozonide intermediate in pathway A is 13 kJ mol¯¹ in the polarizable continuum model with the B3LYP/6-31+G(d,p) method. This reaction is followed by a dissociation into a zwitterionic Criegee intermediate with an activation energy of 76 kJ mol¯¹ in polarizable continuum model with B3LYP/6-31+G(d,p). Furthermore, the nucleophilic addition reactions of methanol to the Criegee intermediate have been studied along two pathways, B1 and B2. The water-mediated mechanism for pathways B2 and C2, where the water molecule acts as a mediator through a 1,5-proton shift, dropped the activation barriers by 18 and 26 kJ mol¯¹, respectively, based on B3LYP/6-31G(2df,p) method. The solvation model (polarizable continuum) reduces the energy barriers for all pathways except for the reaction of methanol with the Criegee intermediate. This study provides an insight into understanding the mechanism of transformation of this pollutant into non-toxic compounds.

Year

Volume

132

Issue

3

Pages

1149-1156

Physical description

Dates

published
2017-09

Contributors

author
  • The University of Jordan, Department of Chemistry, Amman, 11942, Jordan
  • The University of Jordan, Department of Chemistry, Amman, 11942, Jordan
author
  • The University of Jordan, Department of Chemistry, Amman, 11942, Jordan
  • The University of Jordan, Department of Chemistry, Amman, 11942, Jordan
author
  • The University of Jordan, Department of Chemistry, Amman, 11942, Jordan

References

  • [1] A. Mrozik, Z. Piotrowska-Seget, S. Labuzek, Polish J. Environ. Stud. 12, 15 (2003)
  • [2] Y. Toshikazu, P.R. Lawrence, F. Wayne, G. David, D. Fcaw, A. Pryor, Case Stud. Environ. Med. 226, 1 (2009)
  • [3] A.C. Boström, P. Gerde, A. Hanberg, B. Jernström, T. Kyrklund, A. Rannug, M. Tornqvist, K. Victorin, R. Westerholm, Environ. Health Perspect. 110, 451 (2016), doi: 10.1289/ehp.02110s3451
  • [4] Y. Zhang, L. Huang, C. Wang, D. Gao, Z. Zuo, Chemosphere. 93, 1168 (2013), doi: 10.1016/j.chemosphere.2013.06.056
  • [5] Z. Afrasiabi, E. Sinn, S. Padhye, S. Dutta, S. Padhye, C. Newton, C.E. Anson, A.K. Powell, J. Inorg. Biochem. 95, 306 (2003), doi: 10.1016/S0162-0134(03)00131-4
  • [6] E.A. Nodiff, A.J. Saggiomo, M. Shinbo, E.H. Chen, H. Otomasu, Y. Kondo, T. Kikuchi, B.L. Verma, S. Matsuura, J. Med. Chem. 15, 775 (1972)
  • [7] Y.Z. Zhu, S.H. Huang, B.K. Tan, J. Sun, M. Whiteman, Y.C. Zhu, Nat. Prod. Rep. 21, 478 (2004), doi: 10.1039/B304821G
  • [8] R. Sellappan, S. Prasad, P. Jayaseelan, R. Rajavel, Rasayan J. Chem. 3, 556 (2010)
  • [9] M. Saffari Jourshari, M. Mamaghani, F. Shirini, K. Tabatabaeian, M. Rassa, H. Langari, Chinese Chem. Lett. 24, 993 (2013), doi: 10.1002/chin.201412121
  • [10] A.R. Johnsen, L.Y. Wick, H. Harms, Environ. Pollut. 133, 71 (2005), doi: 10.1016/j.envpol.2004.04.015
  • [11] R. Criegee, Angew. Chemie Int. Ed. English. 14, 745 (1975), doi: 10.1002/anie.197507451
  • [12] X.X. Lin, Y.R. Liu, T. Huang, K.M. Xu, Y. Zhang, S. Jiang, Y.-B. Gai, W.-J. Zhang, W. Huang, RSC Adv. 4, 28490 (2014), doi: 10.1039/c4ra04172k
  • [13] M. Kumar, D.H. Busch, B. Subramaniam, W.H. Thompson, J. Phys. Chem. A. 118, 1887 (2014), doi: 10.1021/jp500258h
  • [14] S. Jřrgensen, A. Gross, J. Phys. Chem. A. 113, 10284 (2009), doi: 10.1021/jp909747v
  • [15] Y.-T. Su, H.-Y. Lin, R. Putikam, H. Matsui, M.C. Lin, Y.-P. Lee, Nat. Chem. 6, 477 (2014), doi: 10.1038/nchem.1890
  • [16] L. Jiang, R. Lan, Y.S. Xu, W.J. Zhang, W. Yang, Int. J. Mol. Sci. 14, 5784 (2013), doi: 10.3390/ijms14035784
  • [17] L. Vereecken, H. Harder, A. Novelli, Phys. Chem. Chem. Phys. 14, 14682 (2012), doi: 10.1039/c2cp42300f
  • [18] W.M. Wei, R.H. Zheng, Y.L. Pan, Y.K. Wu, F. Yang, S. Hong, J. Phys. Chem. A 118, 1644 (2014), doi: 10.1021/jp4121047
  • [19] H.G. Kjaergaard, T. Kurtén, L.B. Nielsen, S. Jřrgensen, P.O. Wennberg, J. Phys. Chem. Lett. 4, 2525 (2013), doi: 10.1021/jz401205m
  • [20] L. Jiang, W. Wang, Y. Xu, Chem. Phys. 368, 108 (2010), doi: 10.1016/j.chemphys.2010.01.003
  • [21] D. Zhang, R. Zhang, J. Chem. Phys. 122, 114308 (2005), doi: 10.1063/1.1862616
  • [22] T.L. Nguyen, J. Peeters, L. Vereecken, Phys. Chem. Chem. Phys. 11, 5643 (2009), doi: 10.1039/b822984h
  • [23] W.J. Schmitt, E. Moriconi, J. Owf, Rec. Trav. Chim. Pays-Bas 78, 183 (1955), doi: 10.1002/recl.19590780306
  • [24] P.S. Bailey, J. Am. Chem. Soc. 78, 3811 (1956), doi: 10.1021/ja01596a067
  • [25] H.J. Ringold, G.C. Rosenhranz, Communications 21, 1335 (1956)
  • [26] P.S. Bailey, S.B. Mainthia, J. Org. Chem. 23, 1089 (1958), doi: 10.1021/jo01102a001
  • [27] S.S. Rigby, M. Stradiotto, S. Brydges, D.L.Pole, S. Top, A.D. Bain, Notes. J. Org. Chem. 3263, 3735 (1998), doi: 10.1021/jo9711504
  • [28] S.T. Huh, Bull. Korean Chem. Soc. 21, 365 (2000)
  • [29] S. Bae, H. Mah, S. Chaturvedi, T.M. Jeknic, W.M. Baird, A.K. Katz, H.L. Carrell, J.P. Glusker, T. Okazaki, K.K. Laali, B. Zajc, M.K. Lakshman, J. Org. Chem. 72, 7625 (2007), doi: 10.1021/jo071145s
  • [30] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Suzerain, M.A. Robb, J.R. Cheeseman Jr., J.A. Montgomery, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 09, Gaussian Inc., Wallingford (CT) 2003 http://gaussian.com/g_prod/g09.htm
  • [31] A.D. Becke, J. Chem. Phys. 98, 5648 (1993), doi: 10.1063/1.464913
  • [32] C. Lee, W. Yang, R.G. Lee-Yang-Parr, Phys. Rev. B 37, 785 (1988)
  • [33] Y. Zhao, D.G. Truhlar, Theor. Chem. Acc. 120, 215 (2008), doi: 10.1007/s00214-007-0310-x
  • [34] J. Řezáč, P. Hobza, Chem. Rev. 116, 5038 (2016), doi: 10.1021/acs.chemrev.5b00526
  • [35] G.A. DiLabio, E.R. Johnson, A. Otero-de-la-Roza, Phys. Chem. Chem. Phys. 15, 12821 (2013), doi: 10.1039/c3cp51559a
  • [36] E. Cancees, B. Mennucci, J. Tomasi, J. Chem. Phys. 107, 3032 (1997), doi: 10.1063/1.474659
  • [37] H.P. Hratchian, H.B. Schlegel, J. Chem. Theory Comput. 1, 61 (2005), doi: 10.1021/ct0499783
  • [38] H.P. Hratchian, H.B. Schlegel, J. Chem. Phys. 120, 9918 (2004), doi: 10.1063/1.1724823
  • [39] K. Fukui, Acc. Chem. Res. 14, 363 (1981), doi: 10.1021/ar00072a001
  • [40] J. Trotter, Acta Crystallogr. 16, 605 (1963), doi: 10.1107/S0365110X63001626
  • [41] D.W. Jones, J. Yerkess, J. Mol. Struct. 1, 17 (1971)
  • [42] Y. Zhao, R. Zhang, H. Wang, M. He, X. Sun, Q. Zhang, J. Mol. Struct.: THEOCHEM. 942, 32 (2009), doi: 10.1016/j.theochem.2009.11.029
  • [43] R.C.D.M. Oliveira, G.F. Bauerfeldt, J. Phys. Chem. A 119, 2802 (2015), doi: 10.1021/jp5129222
  • [44] R.C.D.M. Oliveira, G.F. Bauerfeldt, J. Chem. Phys. 137, 134306 (2012), doi: 10.1063/1.4757150
  • [45] S.A. Epstein, N.M. Donahue, J. Phys. Chem. A 114, 7509 (2010), doi: 10.1021/jp102177v
  • [46] M. Olzmann, E. Kraka, D. Cremer, R. Gutbrod, S. Andersson, J. Phys. Chem. A 101, 9421 (1997), doi: 10.1021/jp971663e
  • [47] D. Zhang, W. Lei, R. Zhang, Chem. Phys. Lett. 358, 171 (2002), doi: 10.1016/S0009-2614(02)00260-9
  • [48] K.T. Kuwata, L.C. Valin, Chem. Phys. Lett. 451, 186 (2008), doi: 10.1016/j.cplett.2007.11.092
  • [49] Y. Li, H.L. Liu, X.R. Huang, Z. Li, Y.B. Sun, C.C. Sun, J. Mol. Struct.: THEOCHEM. 945, 120 (2010), doi: 10.1016/j.theochem.2010.01.021
  • [50] B.J. Finnlayson-Pitts, J.N. Pitts Jr., Chemistry of the Upper and Lower Atmosphere, Academic Press, San Diego 1999
  • [51] İ. Akkurt, R.B. Ermiş, P. Baş, K. Günoğlu, Acta Phys. Pol. A 128, B-34 (2015), doi: 10.12693/APhysPolA.128.B-34
  • [52] İ. Akkurt, S. Emikönel, F. Akarslan, K. Günoğlu, S. Kilinçarslan, İ.S. Üncü, Acta Phys. Pol. A 128, B-53 (2015), doi: 10.12693/APhysPolA.128.B-53
  • [53] M.H. Almatarneh, A.A. Abu-Saleh, K.M. Uddin, R.A. Poirier, P.L. Warburton, Int. J. Quantum Chem. 117, 180 (2016), doi: 10.1002/qua.25308
  • [54] A.I. Alrawashdeh, M.H. Almatarneh, R.A. Poirier, Can. J. Chem. 91, 518 (2013), doi: 10.1139/cjc-2012-0416
  • [55] M.H. Almatarneh, C.G. Flinn, R.A. Poirier, W.A. Sokalski, J. Phys. Chem. A 110, 8227 (2006), doi: 10.1021/jp062300u
  • [56] K.M. Uddin, M.H. Almatarneh, D.M. Shaw, R.A. Poirier, J. Phys. Chem. A 115, 2065 (2011), doi: 10.1021/jp1120806
  • [57] M.H. Almatarneh, Ph.D. Thesis, Memorial University, St. John's, NL
  • [58] M.H. Almatarneh, C.G. Flinn, R.A. Poirier, J. Chem. Inf. Model. 48, 831 (2008), doi: 10.1021/ci7003219
  • [59] M.H. Almatarneh, L. Barhoumi, B. Al-Tayyem, A.A. Abu-Saleh, M.M. Al-A'qarbeh, F. Abuorabi, Computat. Theoret. Chem. 1075, 9 (2016), doi: 10.1016/j.comptc.2015.10.032
  • [60] M. Altarawneh, M.H. Almatarneh, A. Marashdeh, Combust. Flame 163, 532 (2016), doi: 10.1016/j.combustflame.2015.10.032
  • [61] M.H. Almatarneh, M. Altarawneh, R.A. Poirier, A. Saraireh, J. Comput. Sci. 5, 568 (2014), doi: 10.1016/j.jocs.2014.02.003
  • [62] N.K. Kinaytürk, H. Oturak, Acta Phys. Pol. A 130, 276 (2016), doi: 10.12693/APhysPolA.130.276
  • [63] H. Oturak, N.K. Kinaytürk, G. Şahın, Acta Phys. Pol. A 128, B-417 (2015), doi: 10.12693/APhysPolA.128.B-417
  • [64] M.A. Halim, M.H. Almatarneh, R.A. Poirier, J. Phys. Chem. B 118, 2316 (2014), doi: 10.1021/jp4107266
  • [65] M. Altarawneh, A.H. Al-Muhtaseb, M.H. Almatarneh, N.W. Assaf, K.K. Altarawneh, J. Phys. Chem. A 115, 14092 (2011), doi: 10.1021/jp2067765

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-app132z3-iip088kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.