Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 64 | 4 | 621-629

Article title

Effect of crude and pure glycerol on biomass production and trehalose accumulation by Propionibacterium freudenreichii ssp. shermanii 1

Content

Title variants

Languages of publication

EN

Abstracts

EN
The dairy propionibacteria, which are traditionally used for the production of Swiss cheeses, are able to synthesize valuable biomolecules, e.g. B group vitamins, propionic acid, and trehalose with unique chemical and physical properties. Both, dairy propionibacteria cells and trehalose, have found many applications as attractive and effective components in food, beauty and health care products. This study confirmed the ability of several strains from the Propionibacterium genus to create trehalose from glycerol. The research aimed to investigate the effect of crude and pure glycerol on biomass production and on trehalose accumulation by Propionibacterium freudenreichii ssp. shermanii 1. The results indicated that the capacity for trehalose accumulation by Propionibacterium spp. was strain dependent. Propionibacterium freudenreichii ssp. shermanii 1 was able to grow on crude glycerol. For both, pure and crude glycerol, the highest amount of dry biomass leveled off at about 4 g/L. While the use of crude glycerol had no effect on the final concentration of biomass, it reduced the accumulation of trehalose in the cells. An increase in the concentration of carbon source (2-8%) resulted in more than a 5-fold rise in trehalose production. The highest trehalose concentration of 195.04 mg/L was obtained with cultures of the said strain supplemented to 8% with pure glycerol.

Year

Volume

64

Issue

4

Pages

621-629

Physical description

Dates

published
2017
received
2017-03-20
revised
2017-08-02
accepted
2017-08-02
(unknown)
2017-11-02

Contributors

  • Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Poznań, Poland
  • Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Poznań, Poland

References

  • Argüelles JC (2000) Physiological roles of trehalose in bacteria and yeasts: a comparative analysis. Arch Microbiol 174: 217-224.
  • Benjelloun H, Rabe Ravelona M, Lebeault JM (2007) Characterization of growth and metabolism of commercial strains of propionic acid bacteria by pressure measurement. Eng Life Sci 7: 143-148. doi: 10.1002/elsc.200620180
  • Burek M, Waśkiewicz S, Wandzik I, Kamińska K (2015) Trehalose - properties, biosynthesis and applications. CHEMIK 69: 469–476.
  • Burgess CM, Smid EJ, Rutten G, Van Sinderen D (2006) A general method for selection of riboflavin-overproducing food grade micro-organisms. Microb Cell Fact 5: 24. doi: 10.1186/1475-2859-5-24.
  • Cardoso FS, Castro RF, Borges N, Santos H (2007) Biochemical and genetic characterization of the pathways for trehalose metabolism in Propionibacterium freudenreichii, and their role in stress response. Microbiology 153: 270-280. doi: 10.1099/mic.0.29262-0.
  • Cardoso FS, Gaspar P, Hugenholtz J, Ramos A, Santos H (2004) Enhancement of trehalose production in dairy propionibacteria through manipulation of environmental conditions. Int J Food Microbiol 91: 195-204. doi: 10.1016/S0168-1605(03)00387-8.
  • Chi Z, Liu J, Ji J, Meng Z (2003) Enhanced conversion of soluble starch to trehalose by a mutant of Saccharomycopsis fibuligera sdu. J Biotechnol 102: 135-141.
  • Choi WJ, Hartono MR, Chan WH, Yeo SS (2011) Ethanol production from biodiesel-derived crude glycerol by newly isolated Kluyvera cryocrescens. Appl Microbiol Biotechnol 89: 1255-1264. doi: 10.1007/s00253-010-3076-3.
  • Claret C, Salmon JM, Romieu C, Bories A (1994) Physiology of Gluconobacter oxydans during dihydroxyacetone production from glycerol. Appl Microbiol Biotechnol 41: 359-365. doi: 10.1007/BF00221232
  • Cousin FJ, Mater DD, Foligne B, Jan G (2011) Dairy propionibacteria as human probiotics: a review of recent evidence. Dairy Sci Technol 91: 1-26. doi: 10.1051/dst/2010032
  • Czaczyk K, Trojanowska K, Grajek W (1997) The influence of a specific microelemental environment in alginate gel beads on the course of propionic acid fermentation. Appl Microbiol Biotechnol 48: 630-635. doi: 10.1007/s002530051107
  • Dalmasso M, Aubert J, Even S, Falentin H, Maillard MB, Parayre S, Loux V, Tanskanen J, Thierry A (2012) Accumulation of intracellular glycogen and trehalose by Propionibacterium freudenreichii under conditions mimicking cheese ripening in the cold. Appl Environ Microbiol 78: 6357-6364. doi: 10.1128/AEM.00561-12.
  • Dąbrowski S, Zabłotna E, Pietrewicz-Kubicz D, Długołęcka A (2012) Screening of environmental samples for bacteria producing 1,3-propanediol from glycerol. Acta Biochim Pol 59: 353-356.
  • Deborde C, Boyaval P (2000) Interactions between pyruvate and lactate metabolism in Propionibacterium freudenreichii subsp. shermanii: in Vivo 13C Nuclear Magnetic Resonance Studies. Appl Environ Microbiol 66: 2012-2020.
  • Deborde C, Corre C, Rolin DB, Nadal L, De Certaines JD, Boyaval P (1996) Trehalose biosynthesis in dairy Propionibacterium. J Magn Reson Anal 2: 297-304.
  • Drożdżyńska A, Leja K, Czaczyk K (2011) Biotechnological production of 1,3-propanediol from crude glycerol. BioTechnologia 92: 92-100.
  • Drożdżyńska A, Szymanowska D, Czaczyk K (2009) Optymalizacja procesu ekstrakcji trehalozy z komórek drożdży i określenie parametrów jej oznaczania techniką HPLC. Żywność Nauka Technologia Jakość 66: 30-42.
  • Duarte JC, Valença GP, Moran PJ, Rodrigues JA (2015) Microbial production of propionic and succinic acid from sorbitol using Propionibacterium acidipropionici. AMB Express 5: 13. doi: 10.1186/s13568-015-0095-6.
  • Elbein AD, Pan YT, Pastuszak I, Carroll D (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13: 17R-27R. doi: 10.1093/glycob/cwg047.
  • Falentin H, Deutsch SM, Jan G, Loux V, Thierry A, Parayre S, Maillard MB, Dherbécourt J, Cousin FJ, Jardin J, Siguier P, Couloux A, Barbe V, Vacherie B, Wincker P, Gibrat JF, Gaillardin C, Lortal S (2010) The complete genome of Propionibacterium freudenreichii CIRM-BIA1T, a hardy Actinobacterium with food and probiotic applications. PloS one 5: e11748. doi: 10.1371/journal.pone.0011748.
  • Furuichi K, Hojo K, Katakura Y, Ninomiya K, Shioya S (2006) Aerobic culture of Propionibacterium freudenreichii ET-3 can increase production ratio of 1,4-dihydroxy-2-naphthoic acid to menaquinone. J Biosci Bioeng 101: 464-470. doi: 10.1263/jbb.101.464.
  • Gwiazdowska D, Trojanowska K (2006) Antimicrobial activity and stability of partially purified bacteriocins produced by Propionibacterium freudenreichii ssp. freudenreichii and ssp. shermanii. Lait 86: 141-154. doi: 10.1051/lait:2006001
  • Higashiyama T (2002) Novel functions and applications of trehalose. Pure Appl Chem 74: 1263-1269. doi: 10.1351/pac200274071263
  • https://www.bp.com/content/dam/bp/pdf/energy-economics/statistical-review2016/bp-statistical-review-of-world-energy-2016-full-report.pdf
  • Hugenholtz J, Hunik J, Santos H, Samid E (2002) Nutraceutical production by propionibacteria. Lait 82: 103-112. doi: 10.1051/lait:2001009
  • Jan G, Rouault A, Maubois JL (2000) Acid stress susceptibility and acid adaptation of Propionibacterium freudenreichii subsp. shermanii. Lait 80: 325-336. doi: 10.1051/lait:2000128
  • Jiang L, Cui H, Zhu L, Hu Y, Xu X, Li S, Huang H (2015) Enhanced propionic acid production from whey lactose with immobilized Propionibacterium acidipropionici and the role of trehalose synthesis in acid tolerance. Green Chem 17: 250-259. doi: 10.1039/C4GC01256A
  • Jiang YL, Li SX, Liu YJ, Ge LP, Han XZ, Liu ZP (2015) Synthesis and evaluation of trehalose-based compounds as novel inhibitors of cancer cell migration and invasion. Chem Biol Drug Des 86: 1017-1029. doi: 10.1111/cbdd.12569.
  • Kośmider A, Białas W, Kubiak P, Drożdżyńska A, Czaczyk K (2012) Vitamin B12 production from crude glycerol by Propionibacterium freudenreichii ssp. shermanii: optimization of medium composition through statistical experimental designs. Bioresour Technol 105: 128-133. doi: 10.1016/j.biortech.2011.11.074.
  • Kośmider A, Drożdżyńska A, Blaszka K, Leja K, Czaczyk K (2010) Propionic acid production by Propionibacterium freudenreichii ssp. shermanii using crude glycerol and whey lactose industrial wastes. Polish J of Environ Stud 19: 1249-1253.
  • Kujawski M, Rymaszewsi J, Cichosz G (1992) The effect of supplementation of selected metal ions on propionibacteria biomass field and production of voltatile fatty acids. Pol J Food Nutr Sci 3: 27-36.
  • Kujawski M, Rymaszewski M, Łaniewska-Moroz Ł, Cichosz G (1996) Możliwości zastosowania bakterii fermentacji propionowej w przemyśle spożywczym. Przem Spoż 6: 35-37.
  • Lee PC, Lee WG, Lee SY, Chang HN (2001) Succinic acid production with reduced by product formation in the fermentation of Anaerobiospirillum succiniciproducens using glycerol as a carbon. Biotechnol Bioeng 72: 41-48.
  • Martens JH, Barg H, Warren MJ, Jahn D (2002) Microbial production of vitamin B12. Appl Microbiol Biotechnol 58: 275-285. doi: 10.1007/s00253-001-0902-7.
  • Oves M, Saghir Khan M, Huda Qari A, Nadeen Felemban M, Almeelbi T (2016) Heavy metals: biological importance and detoxification strategies. J Bioremediat Biodegrad 7: 1-15. doi: 10.4172/2155-6199.1000334
  • Panek A (1985) Trehalose metabolism and its role in Saccharomyces cerevisiae. J Biotechnol 3: 121-130. doi: 10.1016/0168-1656(85)90013-6
  • Papanikolaou S, Fakas S, Fick M, Chevalot I, Galiotou-Panayotou M (2008) Biotechnological valorisation of raw glycerol discharged after biodiesel (fatty acid methyl esters) manufacturing process: Production of 1,3-propanediol, citric acid and single cell oil. Biomass Bioenerg 32: 60-71. doi: 10.1016/j.biombioe.2007.06.007
  • Papanikolaou S, Muniglia L, Chevalot I, Aggelis G, Marc I (2002) Yarrowia lipolytica as a potential producer of citric acid from raw glycerol. J Appl Microbiol 92: 737-44.
  • Pawlicka J, Drożdżyńska A, Kośmider A, Czaczyk K (2015) The effect of phosphate buffer on biomass, propionic acid and trehalose production by Propionibacterium freudenreichii ssp. shermanii. EPISTEME Czasopismo Naukowo-Kulturalne 26: 85-93.
  • Pawlicka-Kaczorowska J, Czaczyk K (2016) Dairy propionibacteria - taxonomy, culture conditions and application. Post Mikrobiol 55: 367–380 (in Polish).
  • Pędziwilk F (1975) A simple plating method for the isolation and enumeration of Propionibacteria. Acta Alim Pol 25: 127-130.
  • Piwowarek K, Lipińska E (2015) Propionic acid bacteria useful in food industry. Przem Spoż 69: 26-30 (in Polish).
  • Poonam, Pophaly SD, Tomar SK, De S, Singh R (2012) Multifaceted attributes of dairy propionibacteria: a review. World J Microbiol Biotechnol 28: 3081-3095. doi: 10.1007/s11274-012-1117-z.
  • Ribeiro M, Leão L, Morais P, Rosa C, Panek A (1999) Trehalose accumulation by tropical yeast strains submitted to stress conditions. Antonie van Leeuwenhoek 75: 245-251.
  • Richards AB, Krakowka S, Dexter LB, Schmid H, Wolterbeek AP, Waalkens-Berendsen DH, Shigoyuki A, Kurimoto M (2002) Trehalose: a review of properties, history of use and human tolerance, and results of multiple safety studies. Food Chem Toxicol 40: 871-898.
  • Ruhal R, Aggarwal S, Choudhury B (2011) Suitability of crude glycerol obtained from biodiesel waste for the production of trehalose and propionic acid. Green Chem 13: 3492-3498. doi: 10.1039/C1GC15847C
  • Ruhal R, Choudhury B (2012a) Use of an osmotically sensitive mutant of Propionbacterium freudenreichii subsp. shermanii for the simultaneous productions of organic acids and trehalose from biodiesel waste based crude glycerol. Bioresour Technol 109: 131-139. doi: 10.1016/j.biortech.2012.01.039.
  • Ruhal R, Choudhury B (2012b) Improved trehalose production from biodiesel waste using parent and osmotically sensitive mutant of Propionibacterium freudenreichii subsp. shermanii under aerobic conditions. J Ind Microbiol Biotechnol 39: 1153-1160. doi: 10.1007/s10295-012-1124-y.
  • Ruhal R, Kataria R, Choudhury B (2013) Trends in bacterial trehalose metabolism and significant nodes of metabolic pathway in the direction of trehalose accumulation. Microb Biotechnol 6: 493-502. doi: 10.1111/1751-7915.12029.
  • Rymowicz W, Rywińska A, Marcinkiewicz M (2009) High-yield production of erythritol from raw glycerol in fed-batch cultures of Yarrowia lipolytica. Biotechnol Lett 31: 377-380. doi: 10.1007/s10529-008-9884-1.
  • Samul D, Leja K, Grajek W (2014) Impurities of crude glycerol and their effect on metabolite production. Ann Microbiol 64: 891-898. doi: 10.1007/s13213-013-0767-x.
  • Santibáñez C, Varnero MT, Bustamante M (2011) Residual glycerol from biodiesel manufacturing, waste or potential source of bioenergy: a review. Chil J Agr Res 71: 469-475. doi: 10.4067/S0718-58392011000300019
  • Sarma SJ, Brar SK, Sydney EB, Le Bihan Y, Buelna G, Soccol CR (2012) Microbial hydrogen production by bioconversion of crude glycerol: A review. Int J Hydrogen Energ 37: 6473-6490. doi: 10.1016/j.ijhydene.2012.01.050
  • Schiraldi C, Di Lernia I, De Rosa M (2002) Trehalose production: exploiting novel approaches. Trends Biotechnol 20: 420-425.
  • Sonhom R, Thepsithar C, Jongsareejit B (2012) High level production of 5-amninolevulinic acid by Propionibacterium acidipropionici grown in low-cost medium. Biotechnol Lett 34: 1667-1672. doi: 10.1007/s10529-012-0943-2.
  • Stjernholm R (1958) Formation of trehalose during dissimilation of glucose by Propionibacterium. Acta Chem Scand 12: 646-649.
  • Stjernholm R, Wood HG (1960) Trehalose and fructose as indicators of metabolism of labelled glucose by propionic acid bacteria. J Biol Chem 235: 2753-2756.
  • Szymanowska-Powałowska D (2014) 1,3-Propanediol production from crude glycerol by Clostridium butyricum DSP1 in repeated batch. Electron J Biotechnol 17: 322-328. doi: 10.1016/j.ejbt.2014.10.001
  • Teramoto N, Sachinvala ND, Shibata M (2008) Trehalose and trehalose-based polymers for environmentally benign, biocompatible and bioactive materials. Molecules 13: 1773-1816. doi: 10.3390/molecules13081773.
  • Tien NT, Karaca I, Tamboli IY, Walter J (2016) Trehalose alters subcellular trafficking and the metabolism of the Alzheimer-associated amyloid precursor protein. J Biol Chem 291: 10528-1040. doi: 10.1074/jbc.M116.719286.
  • Thierry A, Deutsch SM, Falentin H, Dalmasso M, Cousin FJ, Jan G (2011) New insights into physiology and metabolism of Propionibacterium freudenreichii. Int J Food Microbiol 149: 19-27. doi: 10.1016/j.ijfoodmicro.2011.04.026.
  • Van Wyk J, Brtiz JT (2012) A rapid high-performance liquid chromatography (HPLC) method for the extraction and quantification of folates in dairy products and cultures of Propionibacterium freudenreichii. Afr J Biotechnol 11: 2087-2098. doi: 10.1051/dst/2009055
  • Wang L, Lv J, Chu Z, Cui Y, Ren X (2006) Productionn of conjugated linoleic acid by Propionibacterium freudenreichii. Food Chem 103: 31-318. doi: 10.1016/j.foodchem.2006.07.065
  • Yang F, Hanna MA, Sun R (2012) Value-added uses for crude glycerol - a byproduct of biodiesel production. Biotechnol Biofuels 5: 13. doi: 10.1186/1754-6834-5-13.
  • Zárate G (2012) Dairy propionibacteria: less conventional probiotic to improve the human and animal health. In Probiotic in Animals, Rigobelo E, pp 153-202. InTech, Rijeka. doi: 10.5772/50320
  • Zhang A, Yang ST (2009) Propionic acid production from glycerol by metabolically engineered Propionibacterium acidipropionici. Process Biochem 44: 1346-1351. doi: 10.1016/j.procbio.2009.07.013

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-abpv64p621kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.