Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 64 | 3 | 503-506

Article title

Developmental changes in the levels and redox potentials of main hemolymph thiols/disulfides in the Jamaican field cricket Gryllus assimilis

Content

Title variants

Languages of publication

EN

Abstracts

EN
Main thiols and disulfides were determined in the hemolymph of the Jamaican field cricket Gryllus assimilis at various developmental stages. On the basis of these data, redox potentials of the glutathione, cysteine and homocysteine redox systems were calculated. The concentrations of all thiols studied decreased during development (at a stage of 6 molts) with respect to young crickets, and increased again in adult insects. Redox potentials of the glutathione and cysteine systems increased from values of -131.0±5.6 mV and -86.9±17.1 mV, respectively in young crickets to -58.0±3.6 mV and -36.1±4.2 mV, respectively, at the stage of 6 molts and decreased to values of -110.4±24.8 mV and -66.3±12.2 mV, respectively, in adult insects. Redox potentials of the glutathione and cysteine systems in the hemolymph of young and adult insects were similar to those reported for human plasma.

Year

Volume

64

Issue

3

Pages

503-506

Physical description

Dates

published
2017
received
2017-01-22
revised
2017-05-03
accepted
2017-05-08
(unknown)
2017-07-27

Contributors

  • Department of Analytical Biochemistry, Faculty of Biology and Agriculture, University of Rzeszow, Rzeszów, Poland
  • Department of Environmental Chemistry, Faculty of Chemistry, University of Łodz, Łódź, Poland
  • Department of Analytical Biochemistry, Faculty of Biology and Agriculture, University of Rzeszow, Rzeszów, Poland
  • Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
  • Department of Environmental Chemistry, Faculty of Chemistry, University of Łodz, Łódź, Poland

References

  • Bald E, Głowacki R (2001) 2-Chloro-1-Methylquinolinium tetrafluoroborate as effective and thiol specific UV-tagging reagent for liquid chromatography. J Liq Chromatogr Rel Techn 24: 1323-1339. doi: org/10.1081/JLC-100103450
  • Blanco RA, Ziegler TR, Carlson BA, Cheng PY, Park Y, Cotsonis GA, Accardi CJ, Jones DP (2007) Diurnal variation in glutathione and cysteine redox states in human plasma. Am J Clin Nutr 86: 1016-1023.
  • Borra S, Featherstone DE, Shippy SA (2015) Total cysteine and glutathione determination in hemolymph of individual adult D. melanogaster. Anal Chim Acta 853: 660-667. doi: 10.1016/j.aca.2014.10.012.
  • Forman HJ, Zhang H, Rinna A (2009) Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol Aspects Med 30: 1-12. doi: 10.1016/j.mam.2008.08.006.
  • Głowacki R, Bald E (2009) Fully automated method for simultaneous determination of cysteine, cysteinylglycine, glutathione and homocysteine in plasma by high performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 877: 3400-3404. doi: 10.1016/j.jchromb.2009.06.012.
  • Głowacki R, Borowczyk K, Bald E (2012) Fast analysis of wine for total homocysteine content by high-performance liquid chromatography. Amino Acids 42: 247-251. doi: 10.1007/s00726-010-0509-3.
  • Johnson JM, Strobel FH, Reed M, Pohl J, Jones DP (2008) A rapid LC-FTMS method for the analysis of cysteine, cystine and cysteine/cystine steady-state redox potential in human plasma. Clin Chim Acta 396: 43-48. doi: 10.1016/j.cca.2008.06.020.
  • Jocelyn PC (1967) The standard redox potential of cysteine-cystine from the thiol-disulphide exchange reaction with glutathione and lipoic acid. Eur J Biochem 2: 327-331.
  • Jones DP, Carlson JL, Mody VC, Cai J, Lynn MJ, Sternberg P (2000) Redox state of glutathione in human plasma. Free Radic Biol Med 28: 625-635. doi: org/10.1016/S0891-5849(99)00275-0.
  • Kuśmierek K, Chwatko G, Głowacki R, Kubalczyk P, Bald E (2011) Ultraviolet derivatization of low-molecular-mass thiols for high performance liquid chromatography and capillary electrophoresis analysis. J Chromatogr B Analyt Technol Biomed Life Sci 879: 1290-1307. doi: 10.1016/j.jchromb.2010.10.035.
  • Manta B, Comini M, Medeiros A, Hugo M, Trujillo M, Radi R (2013) Trypanothione: a unique bis-glutathionyl derivative in trypanosomatids. Biochim Biophys Acta 1830: 3199-3216. doi: 10.1016/j.bbagen.2013.01.013.
  • Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52: 711-760. doi: 10.1146/annurev.bi.52.070183.003431.
  • Moriarty SE, Shah JH, Lynn M, Jiang S, Openo K, Jones DP, Sternberg P (2003) Oxidation of glutathione and cysteine in human plasma associated with smoking. Free Radic Biol Med 35: 1582-1588. doi.org/10.1016/j.freeradbiomed.2003.09.006.
  • Newton GL, Fahey RC (2002) Mycothiol biochemistry. Arch Microbiol 178: 388-394. doi: 10.1007/s00203-002-0469-4.
  • Paredes J, Jones DP, Wilson ME, Herndon JG (2014) Age-related alterations of plasma glutathione and oxidation of redox potentials in chimpanzee (Pan troglodytes) and rhesus monkey (Macaca mulatta). Age (Dordr) 36: 719-732. doi: 10.1007/s11357-014-9615-6.
  • Rebrin I, Bayne AC, Mockett RJ, Orr WC, Sohal RS (2004) Free aminothiols, glutathione redox state and protein mixed disulphides in aging Drosophila melanogaster. Biochem J 382: 131-136. doi: 10.1042/BJ20040506.
  • Roede JR, Uppal K, Liang Y, Promislow DE, Wachtman LM, Jones DP (2013) Characterization of plasma thiol redox potential in a common marmoset model of aging. Redox Biol 1: 387-393. doi: 10.1016/j.redox.2013.06.003.
  • Samiec PS, Drews-Botsch C, Flagg EW, Kurtz JC, Sternberg P Jr, Reed RL, Jones DP (1998) Glutathione in human plasma: decline in association with aging, age-related macular degeneration, and diabetes. Free Radic Biol Med 24: 699-704. doi: org/10.1016/S0891-5849(97)00286-4.
  • Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30: 1191-1212. doi: org/10.1016/S0891-5849(01)00480-4 doi: org/10.1016/S0891-5849(97)00286-4.
  • Sohal RS, Orr WC (2012) The redox stress hypothesis of aging. Free Radic Biol Med 52: 539-555. doi: 10.1016/j.freeradbiomed.2011.10.445.
  • Yi H, Ravilious GE, Galant A, Krishnan HB, Jez JM (2010) From sulfur to homoglutathione: thiol metabolism in soybean. Amino Acids 39: 963-978. doi: 10.1007/s00726-010-0572-9.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-abpv64p503kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.