Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 64 | 2 | 239-244

Article title

The choice of the anchoring protein influences the interaction of recombinant Bacillus spores with the immune system

Content

Title variants

Languages of publication

EN

Abstracts

EN
The technology of display of heterologous proteins on the surface of Bacillus subtilis spores enables use of these structures as carriers of antigens for mucosal vaccination. Currently, there are no technical possibilities to predict whether a designed fusion will be efficiently displayed on the spore surface and how such recombinant spores will interact with cells of the immune system. In this study, we compared four variants of B. subtilis spores presenting a fragment of a FliD protein from Clostridium difficile in fusion with CotB, CotC, CotG or CotZ spore coat proteins. We show that these spores promote their own phagocytosis and activate both, the J774 macrophages and JAWSII dendritic cells of murine cell lines. Moreover, we used these spores for mucosal immunization of mice. We conclude that the observed effects vary with the type of displayed FliD-spore coat protein fusion and seem to be mostly independent of its abundance and localization in the spore coat structure.

Year

Volume

64

Issue

2

Pages

239-244

Physical description

Dates

published
2017
received
2016-09-25
revised
2016-10-12
accepted
2016-10-17
(unknown)
2017-04-12

Contributors

  • Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdańsk, Gdańsk, Poland
  • Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdańsk, Gdańsk, Poland
  • Tri-City Animal Laboratory, Medical University of Gdańsk, Gdańsk, Poland
  • Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdańsk, Gdańsk, Poland
  • Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology UG-MUG, Medical University of Gdańsk, Gdańsk, Poland
  • Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology UG-MUG, Medical University of Gdańsk, Gdańsk, Poland
author
  • Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology UG-MUG, Medical University of Gdańsk, Gdańsk, Poland

References

  • Abhyankar W, de Koning LJ, Brul S, de Koster CG (2014) Spore proteomics: the past, present and the future. FEMS Microbiol Lett 358: 137-144. doi: 10.1111/1574-6968.12568.
  • Anagnostopoulos C, Crawford IP (1961) Transformation studies on the linkage of markers in the tryptophan pathway in Bacillus subtilis. Proc Natl Acad Sci U S A 47: 378-390.
  • Ceragioli M, Cangiano G, Esin S, Ghelardi E, Ricca E, Senesi S (2009) Phagocytosis, germination and killing of Bacillus subtilis spores presenting heterologous antigens in human macrophages. Microbiology 155: 338-346. doi: 10.1099/mic.0.022939-0.
  • Cutting SM (2011) Bacillus probiotics. Food Microbiol 28: 214-220. doi: 10.1016/j.fm.2010.03.007.
  • Duc le H, Hong HA, Fairweather N, Ricca E, Cutting SM (2003) Bacterial spores as vaccine vehicles. Infect Immun 71: 2810-2318.
  • Duc LH, Hong HA, Uyen NQ, Cutting SM (2004) Intracellular fate and immunogenicity of B subtilis spores. Vaccine 22: 1873-1885.
  • Fakhry S, Sorrentini I, Ricca E, De Felice M, Baccigalupi L (2008) Characterization of spore forming Bacilli isolated from the human gastrointestinal tract. J Appl Microbiol 105: 2178-2186. doi: 10.1111/j.1365-2672.2008.03934.x.
  • Hinc K, Isticato R, Dembek M, Karczewska J, Iwanicki A, Peszyńska-Sularz G, De Felice M, Obuchowski M, Ricca E (2010) Expression and display of UreA of Helicobacter acinonychis on the surface of Bacillus subtilis spores. Microb Cell Fact 9: 2. doi: 10.1186/1475-2859-9-2.
  • Hinc K, Iwanicki A, Obuchowski M (2013) New stable anchor protein and peptide linker suitable for successful spore surface display in B subtilis. Microb Cell Fact 12: 22. doi: 10.1186/1475-2859-12-22.
  • Hinc K, Stasiłojć M, Piątek I, Peszyńska-Sularz G, Isticato R, Ricca E, Obuchowski M, Iwanicki A (2014) Mucosal adjuvant activity of IL-2 presenting spores of Bacillus subtilis in a murine model of Helicobacter pylori vaccination. PLoS One 9: e95187. doi: 10.1371/journal.pone.0095187.
  • Hoang TH, Hong HA, Clark GC, Titball RW, Cutting SM (2008) Recombinant Bacillus subtilis expressing the Clostridium perfringens alpha toxoid is a candidate orally delivered vaccine against necrotic enteritis. Infect Immun 76: 5257-5265. doi: 10.1128/IAI.00686-08.
  • Hong HA, To E, Fakhry S, Baccigalupi L, Ricca E, Cutting SM (2009) Defining the natural habitat of Bacillus spore-formers. Res Microbiol 160: 375-379. doi: 10.1016/j.resmic.2009.06.006.
  • Huang JM, La Ragione RM, Nunez A, Cutting SM (2008) Immunostimulatory activity of Bacillus spores. FEMS Immunol Med Microbiol 53: 195-203. doi: 10.1111/j.1574-695X.2008.00415.x.
  • Huang JM, Hong HA, Van Tong H, Hoang TH, Brisson A, Cutting SM (2010) Mucosal delivery of antigens using adsorption to bacterial spores. Vaccine 28: 1021-1030. doi: 10.1016/j.vaccine.2009.10.127.
  • Imamura D, Kuwana R, Takamatsu H, Watabe K (2010) Localization of proteins to different layers and regions of Bacillus subtilis spore coats. J Bacteriol 192: 518-524. doi: 10.1128/JB.01103-09.
  • Isticato R, Cangiano G, Tran HT, Ciabattini A, Medaglini D, Oggioni MR, De Felice M, Pozzi G, Ricca E (2001) Surface display of recombinant proteins on Bacillus subtilis spores. J Bacteriol 183: 6294-6301.
  • Isticato R, Esposito G, Zilhão R, Nolasco S, Cangiano G, De Felice M, Henriques AO, Ricca E (2004) Assembly of multiple CotC forms into the Bacillus subtilis spore coat. J Bacteriol 186: 1129-1135.
  • Isticato R, Sirec T, Treppiccione L, Maurano F, De Felice M, Rossi M, Ricca E (2013) Non-recombinant display of the B subunit of the heat labile toxin of Escherichia coli on wild type and mutant spores of Bacillus subtilis. Microb Cell Fact 12: 98. doi: 10.1186/1475-2859-12-98.
  • Isticato R, Ricca E (2014) Spore surface display. Microbiol Spectr 2 doi: 10.1128/microbiolspec.TBS-0011-2012.
  • Iwanicki A, Piątek I, Stasiłojć M, Grela A, Lęga T, Obuchowski M, Hinc K (2014) A system of vectors for Bacillus subtilis spore surface display. Microb Cell Fact 13: 30. doi: 10.1186/1475-2859-13-30.
  • Kosaka T, Maeda T, Nakada Y, Yukawa M, Tanaka S (1998) Effect of Bacillus subtilis spore administration on activation of macrophages and natural killer cells in mice. Vet Microbiol 60: 215-225.
  • Liang J, Fu J, Kang H, Lin J, Yu Q, Yang Q (2013) The stimulatory effect of TLRs ligands on maturation of chicken bone marrow-derived dendritic cells. Vet Immunol Immunopathol 155: 205-210. doi: 10.1016/j.vetimm.2013.06.014.
  • McKenney PT, Driks A, Eskandarian HA, Grabowski P, Guberman J, Wang KH, Gitai Z, Eichenberger P (2010) A distance-weighted interaction map reveals a previously uncharacterized layer of the Bacillus subtilis spore coat. Curr Biol 20: 934-938. doi: 10.1016/j.cub.2010.03.060.
  • McKenney PT, Driks A, Eichenberger P (2013) The Bacillus subtilis endospore: assembly and functions of the multilayered coat. Nat Rev Microbiol 11: 33-44. doi: 10.1038/nrmicro2921.
  • Negri A, Potocki W, Iwanicki A, Obuchowski M, Hinc K (2013) Expression and display of Clostridium difficile protein FliD on the surface of Bacillus subtilis spores. J Med Microbiol 62: 1379-1385. doi: 10.1099/jmm.0.057372-0.
  • Nicholson WL, Setlow P (1990) Sporulation, germination and outgrowth. In Molecular Biological Methods for Bacillus Harwood C, Cutting S eds, pp 391-450. John Wiley and Sons.
  • Nicholson WL (2002) Roles of Bacillus endospores in the environment. Cell Mol Life Sci 59: 410-416.
  • Péchiné S, Gleizes A, Janoir C, Gorges-Kergot R, Barc MC, Delmée M, Collignon A (2005) Immunological properties of surface proteins of Clostridium difficile. J Med Microbiol 54: 193-196.
  • Permpoonpattana P, Hong HA, Phetcharaburanin J, Huang JM, Cook J, Fairweather NF, Cutting SM (2011) Immunization with Bacillus spores expressing toxin A peptide repeats protects against infection with Clostridium difficile strains producing toxins A and B. Infect Immun 79: 2295-2302. doi: 10.1128/IAI.00130-11.
  • Ricca E, Baccigalupi L, Cangiano G, De Felice M, Isticato R (2014) Mucosal vaccine delivery by non-recombinant spores of Bacillus subtilis. Microb Cell Fact 13: 115. doi: 10.1186/s12934-014-0115-2.
  • Sánchez-Hurtado K, Corretge M, Mutlu E, McIlhagger R, Starr JM, Poxton IR (2008) Systemic antibody response to Clostridium difficile in colonized patients with and without symptoms and matched controls. J Med Microbiol 57: 717-724. doi: 10.1099/jmm.0.47713-0.
  • Stasiłojć M, Hinc K, Peszyńska-Sularz G, Obuchowski M, Iwanicki A (2015) Recombinant Bacillus subtilis Spores Elicit Th1/Th17-polarized immune response in a murine model of Helicobacter pylori vaccination. Mol Biotechnol 57: 685-691. doi: 10.1007/s12033-015-9859-0.
  • Tasteyre A, Barc MC, Collignon A, Boureau H, Karjalainen T (2001) Role of FliC and FliD flagellar proteins of Clostridium difficile in adherence and gut colonization. Infect Immun 69: 7937-7940.
  • Valdez A, Yepiz-Plascencia G, Ricca E, Olmos J (2014) First Litopenaeus vannamei WSSV 100% oral vaccination protection using CotC::Vp26 fusion protein displayed on Bacillus subtilis spores surface. J Appl Microbiol 117: 347-357. doi: 10.1111/jam.12550.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-abpv64p239kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.